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Prime editor-based high-throughput 
screening reveals functional synonymous 
mutations in human cells
 

Xuran Niu    1,5, Wei Tang    1,2,5, Yongshuo Liu1,3,5, Binrui Mo1, Ying Yu1, 
Ying Liu    1,4  & Wensheng Wei    1,4 

Synonymous mutations are generally considered neutral, while their roles 
in the human genome remain largely unexplored. Here we use the PEmax 
system to create a library of 297,900 engineered prime-editing guide 
RNAs and perform extensive screening to identify synonymous mutations 
affecting cell fitness. Unlike recent findings in yeast, group-level analyses 
show that synonymous mutations diverge from nonsynonymous mutations 
in fitness effects yet exhibit similar phenotypic distributions relative to 
negative controls. Following rigorous quality control, only a small subset 
demonstrated measurable effects. For these functional mutations, we 
develop a specialized machine learning tool and uncover their impact 
on various biological processes such as messenger RNA splicing and 
transcription, supported by multifaceted experimental evidence. We find 
that synonymous mutations can alter RNA folding and affect translation, as 
demonstrated by PLK1_S2. By integrating screening data with our model,  
we predict clinically deleterious synonymous mutations. This research 
deepens our understanding of synonymous mutations, providing insights 
for clinical disease studies.

Because of the degeneracy of the genetic codon system, not all 
single-base mutations lead to changes in the amino acid sequence. 
Such mutations are termed synonymous and are traditionally viewed 
as neutral in evolutionary theory1. A recent study in Saccharomyces 
cerevisiae reported that synonymous and nonsynonymous mutations 
can similarly disrupt cell fitness, claiming that synonymous muta-
tions may have non-neutral phenotypes2. However, these results have 
been debated3, reigniting interest and discussion among researchers 
about the biological effects of synonymous mutations. Earlier studies 
in viruses and prokaryotes also suggested that synonymous mutations 
could affect the fitness of these organisms4–7. Yet, it remains unclear 
whether these findings in noneukaryotic organisms and yeast are appli-
cable to mammals, especially humans.

Previous research has linked a small number of synonymous muta-
tions to human diseases8 and identified them as potential drivers in 
cancer through bioinformatics analyses9. Despite the development 
of tools for predicting deleterious synonymous mutations10,11, experi-
mentally confirmed cases in humans remain scarce, highlighting the 
need for a standardized experimental method for large-scale studies 
of synonymous mutations in human cells.

The advent of CRISPR–Cas gene-editing technology has pro-
vided a powerful tool for studying the genome12,13. An important 
derivative of CRISPR–Cas, the prime editor (PE), combines dCas9 
with a reverse transcriptase to introduce various types of edits into 
the genome through a reverse transcription template (RTT) in the 
prime-editing guide RNA (pegRNA)14. Enhancements such as the 
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35 days. We termed this methodology PRESENT (prime editor-based 
screen technology) (Fig. 1a).

Quality control and analysis of screening data
Because mutations were introduced through the RTT, decoding the 
information from the RTT and eBAR regions was sufficient for analysis 
(Extended Data Fig. 2a). To process the data, we developed a tailored 
bioinformatics algorithm called ZFC-eBAR (Methods), enabling com-
prehensive evaluation of the effects from the eBAR level to the mutation 
level (Extended Data Fig. 2b). For each epegRNA, we calculated the zLFC 
(z score of log2 fold change) across three eBAR replicates and applied a 
robust rank aggregation (RRA) algorithm20 to assess the significance of 
epegRNA enrichment in either the enriched or the depleted direction. 
We defined the screen score by −log10(RRA) and direction (Extended 
Data Fig. 2b).

As each mutation in the library is targeted by an average of 2.2 
epegRNAs, we defined the fitness score for mutations as the Top2 
mean screen score. To ensure the accuracy of data analysis, we 
included AAVS1-targeting and nontargeting epegRNAs as negative 
controls. On the basis of their performance, we established a thresh-
old of RRA ≤ 0.001 (|screen score| ≥ 3) for this screening (Supplemen-
tary Table 3).

To evaluate the reliability of the screening results, we assessed 
the performance of essential genes subjected to knockout mutations 
using epegRNA, which introduced nonsense or frameshift mutations 
through single-base insertions. Using the Chronos score, we estab-
lished two evaluation thresholds: a stringent criterion (<−2.5) and a 
more relaxed criterion (<−0.5). The area under the curve (AUC) for the 
receiver operating characteristic (ROC) curves was 0.72 for epegRNAs 
targeting highly essential genes and 0.65 for a broader range of essen-
tial genes, reflecting the overall performance of the screening (Fig. 1b 
and Extended Data Fig. 2c).

Analyzing results at the epegRNA level may partially underesti-
mate the biological effects of the mutations. To address this, we per-
formed additional mutation-level analyses. By selecting the epegRNA 
with the highest screen score for a given mutation, the mutation-level 
AUCs for the two evaluation criteria were 0.75 and 0.68, respectively 
(Fig. 1c and Extended Data Fig. 2d). Further evaluation of highly essen-
tial genes using different scoring methods (Top1 score, Top2 mean 
score and all mean score) yielded consistent AUCs of 0.75, 0.76 and 0.75, 
respectively (Extended Data Fig. 2e). Additionally, zLFC values of epe-
gRNAs introducing the same mutation in these genes showed strong 
correlation with the top two ranked epegRNAs (Extended Data Fig. 2f).

Given the high MOI used in this screening, subtle phenotypic 
changes (low LFC) may lead to random epegRNA distributions, poten-
tially introducing background noise and affecting overall eBAR paral-
lelism analyses (Extended Data Fig. 3a). To more precisely assess the 
data quality, we sought to minimize the influence of potential experi-
mental noise by analyzing the correlation between different eBARs 
representing replicates as the LFC threshold increased. This approach 
revealed progressively stronger zLFC correlations among the three 
eBAR replicates at higher LFC levels, highlighting the effectiveness of 
the ZFC-eBAR algorithm in capturing strongly correlated epegRNAs 
from raw data. To intuitively illustrate data reproducibility, we applied 
an absolute LFC threshold of ≥1 (Fig. 1d and Extended Data Fig. 3b), with 
direct LFC correlation analyses exhibiting comparable consistency 
(Extended Data Fig. 3c–e). Furthermore, reproducibility assessment 
of the enriched epegRNAs subset identified by our screening threshold 
(n = 2,134) revealed good correlations regardless of mutation type 
(synonymous or nonsynonymous mutations; Extended Data Fig. 3f,g). 
Collectively, these results confirm the reliability and robustness of our 
screening results under stringent filtering criteria.

Using the defined screening threshold, we identified 1,914 
mutations impacting cell fitness, encompassing both depletion and 
enrichment trends (Fig. 1e and Supplementary Table 3). This dataset 

engineered pegRNA (epegRNA)15 and the more efficient PEmax16 have 
further improved the use of PE for precise genetic manipulations. 
In this study, using PE technology, we created a library of epegRNAs 
targeting 3,644 human protein-coding genes to screen for potentially 
functional synonymous mutations affecting human cell fitness. Our 
findings confirm that, while most synonymous mutations in human 
are likely neutral, a minority can produce phenotypic changes. Using 
machine learning, we identified how these mutations influence a 
range of biological processes, including messenger RNA splicing, 
folding, transcription and translation. Furthermore, we also pre-
dicted clinically deleterious synonymous mutations, thereby enhanc-
ing our understanding of these mutations and their importance in 
clinical research on human diseases.

Results
Development of a synonymous mutation screen method  
using PE
To precisely and efficiently generate synonymous mutations across 
different types of nucleotide substitutions, we used the PEmax 
system alongside epegRNA for targeted genetic edits. To facilitate 
high-throughput screening at a high multiplicity of infection (MOI), we 
integrated barcodes into the external region of the epegRNA, termed 
eBARs, as reported previously17,18. Each epegRNA was labeled with three 
independent eBARs, effectively creating three biological replicates for 
our screening process (Extended Data Fig. 1a). For the screening, we 
selected the human colon cancer cell line HCT116, which is beneficial 
for PE editing because of its naturally homozygous nonsense mutation 
in the MLH1 gene16.

Following a set of specific criteria (Extended Data Fig. 1b), we con-
structed an epegRNA library. Initially, we sourced potential pathogenic 
synonymous mutations from two human disease databases, ClinVar 
and SynMICdb19. Additionally, our goal was to investigate the function 
of synonymous mutations in a relatively unbiased manner rather than 
focusing solely on clinically recognized mutations. Consequently, we 
selected 67 genes for saturated synonymous mutation design on the 
basis of their mutation load and expression levels, including human 
homologous genes previously studied in yeast2 (Extended Data Fig. 1c). 
Within this group, 11 essential human genes were selected for complete 
saturation tiling mutation design to thoroughly evaluate the biologi-
cal impacts of synonymous mutations alongside various nonsynony-
mous mutations (Extended Data Fig. 1c). The library also included 
designs for single-base insertions or the introduction of premature 
stop codons for gene knockouts and incorporated AAVS1-targeting 
and nontargeting epegRNAs as negative controls. Each mutation site 
was targeted by an average of 2.2 epegRNAs (Extended Data Fig. 1d). 
For the 11 genes designed for saturation mutagenesis, all possible types 
of amino acid substitutions within the range of point mutations were 
included (Extended Data Fig. 1e). Ultimately, the library contained 
297,900 epegRNAs targeting 94,993 synonymous mutations and 39,336 
nonsynonymous mutations across 3,644 protein-coding genes (Sup-
plementary Tables 1 and 2).

PEmax was stably integrated into HCT116 cells through lentiviral 
transduction and a single clone was selected for subsequent studies. 
The expression profiles of HCT116-PEmax cells were almost identical 
to those of wild-type (WT) cells and the HCT116-PEmax cells infected 
with nontargeting or AAVS1-targeting epegRNAs, which served as nega-
tive controls, showed minimal changes (Extended Data Fig. 1f). This 
indicates that the stable cell line closely resembles the characteristics 
of WT HCT116 cells. We also assessed the editing efficiency of PEmax 
in HCT116 cells. Over a 28-day culture period with periodic sampling, 
the editing of the high-efficiency FANCF + 5 G-to-T mutation showed a 
gradual slowdown after 14 days, whereas the low-efficiency RNF2 + 1 
C-to-A mutation exhibited a gradual increase in editing efficiency over 
time (Extended Data Fig. 1g). Given that phenotypic changes often lag 
behind genotypic alterations, we extended the screening duration to 
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Fig. 1 | High-throughput screening unveils functional synonymous mutations 
in the human genome. a, Schematic of the PRESENT workflow. b, ROC analysis 
based on gene knockout effects at the epegRNA level. Red point, selected 
threshold. Red curve, epegRNAs targeting genes with a Chronos score <−2.5; 
dark-blue curve, epegRNAs targeting genes with a Chronos score <−0.5.  
c, ROC analysis based on gene knockout effects at the mutation level. Red point, 
selected threshold. Red curve, the highest-scoring epegRNA in the screen for 
each mutation targeting genes with a Chronos score <−2.5; dark-blue curve, the 
highest-scoring epegRNA in the screen for each mutation targeting genes with a 
Chronos score <−0.5. d, Pearson correlation analysis of zLFC values between two 
eBARs across varying thresholds of absolute LFC values from the third eBAR. The 
x axis indicates the absolute LFC threshold applied to each eBAR while the y axis 
represents the Pearson correlation coefficient between the remaining two eBARs. 
Left: specific data points enclosed within a square. Right: magnified view for a 

closer examination (n indicates the number of epegRNAs shown in the figure). 
e, Volcano plot illustrating the results of screening for functional synonymous 
and nonsynonymous mutations affecting cell fitness. f, Relative cell proliferation 
rates for validated mutations. Data are presented as the mean ± s.d. (n = 3 
biological replicates). P values were calculated using a two-tailed Student’s t-test. 
**P < 0.01 and ****P < 0.0001. g,h, Distribution of fitness scores for the 11 genes 
designed by saturation mutagenesis, categorized by mutation type: combined 
(g) or shown separately by gene (h). P values were calculated using a two-sided 
Wilcoxon test with Benjamini–Hochberg correction. **P < 0.01, ***P < 0.001 
and ****P < 0.0001; NS, not significant. i, Spearman correlation between the top 
screen scores of missense mutations and prediction scores from AlphaMissense 
and CADD. For the box plots in g and h, the center line represents the median, the 
box limits denote the upper and lower quartiles and whiskers extend to 1.5 times 
the interquartile range.
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underwent the aforementioned stringent quality control procedures to 
ensure its reproducibility. Of these, 409 were synonymous mutations 
and 1,505 were nonsynonymous mutations. To validate the reliability 
of the results, we randomly selected synonymous mutations above 
the threshold for experimental validation (Fig. 1f and Supplementary 
Fig. 1a–d). All tested mutations demonstrated precise and clean editing 
(Supplementary Fig. 2).

Additionally, we randomly selected 20 synonymous mutations 
below the threshold and measured their editing outcomes. These muta-
tions generated pure editing products; however, their overall editing 
efficiency was lower compared to mutations exceeding the threshold 
(Supplementary Fig. 3). While the stringent threshold applied ensures a 
low false positive rate (Fig. 1b,c and Extended Data Fig. 2e), variations in 
prime-editing efficiency may result in some mutations with low editing 
rates or subtle phenotypic effects being overlooked.

To assess the sensitivity of the screening, we simulated the drop-
out process of deleterious mutations that impair cell proliferation 
and evaluated whether these mutations could be identified using 
our analysis method. The results indicate that, when the mean count 
decreased by 21%, some epegRNAs were detectable by the algorithm, 
aligning with the weakest LFC (~−0.4) observed in the screening. When 
the mean count was reduced by 50%, approximately half of the epegR-
NAs were detectable above the threshold. By relaxing the threshold to 
|screen score| = 2.2 (approximately 3 s.d.), our analysis method was 
able to detect epegRNA count changes as small as 10% (Extended Data 
Fig. 3h,i). These findings demonstrate that our analysis could identify 
functional mutations with reliable detection sensitivity.

Characterization of synonymous and nonsynonymous 
mutations
The inclusion of various mutation types in the library enables us to 
conduct a comprehensive characterization analysis on the basis of 
the screening results. In our screen, 0.43% of synonymous mutations 
demonstrated measurable effects on cell fitness, compared to 3.83% 
of nonsynonymous mutations. While the fitness impact of synony-
mous mutations did not significantly differ from that of the negative 
controls, nonsynonymous mutations, including missense, frameshift 
and nonsense types, exhibited clear effects on cell fitness (Fig. 1g). This 
indicates that, in general, most synonymous mutations in the human 
genome are likely neutral, diverging from results seen in yeast2. Signifi-
cant fitness differences between synonymous and missense mutations 
were noted within the 11 genes targeted for saturated mutation design 
(Fig. 1h). The results of our analysis suggest that findings from yeast 
studies may not be directly applicable to the human genome. To further 
explore the differences between our screening results and those from 
yeast studies, we examined the distribution of saturated synonymous 
mutations across various gene sets: all 67 genes with saturated syn-
onymous mutation designs, 11 highly essential genes in HCT116 and 12 
human homologous genes of the yeast (RPL39 was excluded as it was 
designed with only 11 epegRNAs, insufficient for statistical analysis). 
The distribution patterns of synonymous mutations in these datasets 
showed no significant differences, with all centered around a median 
of 0 (Extended Data Fig. 4a). This indicates that synonymous muta-
tions in these human genes do not exhibit the fitness distribution shifts 
observed in yeast. Despite variations in the essentiality of these genes in 
HCT116 cells (Extended Data Fig. 4b), synonymous mutations consist-
ently displayed a neutral effect compared to nonsense and frameshift 
mutations (Extended Data Fig. 4c).

Given that we performed full saturation mutagenesis on 11 genes, 
we also gathered extensive data to assess the biological effects of non-
synonymous mutations, such as missense mutations, in the human 
genome. Variant effect predictors, such as AlphaMissense21, provide 
insights into the impact of missense mutations. To evaluate these, we 
compared missense mutations in the fully saturated genes with predic-
tions from AlphaMissense and CADD11. Because AlphaMissense lacks 

predictions for FAU, the comparison was conducted on the remaining 
ten genes. Although these prediction results do not directly correspond 
to cell fitness, the Spearman correlations showed reasonable consist-
ency, especially for highly essential genes (Fig. 1i). Further analysis of 
these nonsynonymous mutations demonstrated a direct relationship 
between the probability of amino acid substitution and the effect 
on cell fitness. Amino acids with lower substitution probabilities are 
more likely to exhibit more significant fitness impacts after mutation 
(Extended Data Fig. 5a).

We highlighted two specific cases to demonstrate the value of 
gene saturation design for studying different mutation types and 
key sites. RAN, a member of the small G-protein family with GTP 
hydrolase activity, showed a hotspot effect in the G3 switch II domain, 
with mutations impacting the enzyme active center Q69 being par-
ticularly prominent (Extended Data Fig. 5b). Narrowing the analy-
sis to important structural domains and active sites revealed more 
pronounced biological effects of missense mutations (Extended 
Data Fig. 5c). Interestingly, the yeast homolog of RAN, Gsp1/Ran, 
has also been studied using saturation mutagenesis22 but the corre-
lation between our results and the yeast findings was relatively low 
(Extended Data Fig. 5d). Similarly, for POLR2L, our screen identified 
significant enrichment of mutations at the protein’s Zn2+-binding 
sites (Extended Data Fig. 5e)23.

At the level of point mutations, missense mutations primarily 
disrupted protein function, consistent with general understanding. 
Nonsense mutations typically produced the most pronounced biologi-
cal effects, with amino acid substitutions such as L > P, L > R and R > P 
frequently resulting in phenotypes (Extended Data Fig. 5f, g).

Although synonymous mutations in the human genome are pre-
dominantly neutral, the 409 enriched mutations identified in our 
study demonstrated biological effects on cell proliferation. Statistical 
analysis of these mutations revealed that the highest levels of enrich-
ment occurred in alanine, glycine and leucine following synonymous 
changes. Nevertheless, the observed patterns differed when compared 
to those in clinical synonymous mutations (Extended Data Fig. 5h). 
Furthermore, C•G base pairs in these synonymous mutations were 
more likely to generate fitness effects after mutation compared to A•T 
base pairs, a trend consistent with both saturation synonymous muta-
tions and clinical synonymous mutations (Extended Data Fig. 5i). This 
consistency exists regardless of the preferences associated with prime 
editing24,25. As mentioned earlier, these functional synonymous muta-
tions were successfully validated through random selection (Fig. 1f). 
Over an 18-day period of continuous cell culture, significant pheno-
typic effects were observed for all synonymous mutations categorized 
under depletion, while those under enrichment showed relatively mild 
effects. On the basis of these observations, our subsequent research 
efforts concentrated on exploring the effects of depletion direction 
synonymous mutations.

DS Finder reveals deleterious synonymous mutation 
determinants
To elucidate the mechanisms behind deleterious synonymous muta-
tions, we analyzed them from three perspectives, at the gene, mRNA 
and nucleotide levels. Deleterious mutations are more likely to cause 
aberrant splicing, disrupt RNA secondary structure and use infrequent 
codons. These mutations often occur in conserved nucleotides, highly 
expressed genes and essential genes (Extended Data Fig. 6a–f).

To identify the most influential features associated with these 
mutations, we developed a machine learning model named DS Finder 
(deleterious synonymous mutations finder) based on the CatBoost 
framework26 and trained it as a binary classifier with our screening 
data (Fig. 2a). Using the extensive data generated from our screen, 
DS Finder demonstrated exceptional performance in predicting del-
eterious mutations within the given cellular context. It surpassed two 
existing models: CADD, which predicts general mutations11, and SilVA, 
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a model for synonymous mutations trained on a smaller dataset of 33 
deleterious synonymous mutations10 (Fig. 2b).

Key features identified by DS Finder include the third position of 
the codon being C•G or A•T base pairs, with C•G pairs being more likely 
to impact cell fitness (Extended Data Fig. 5i and Fig. 2c). Factors such 
as gene essentiality, expression levels and exon CpG content also have 
crucial roles (Fig. 2c), emphasizing the need to consider these features 
in the model as they vary across different tissues. Alterations in splicing, 

especially the loss of splice donor sites (Fig. 2c), likely represent the 
primary mechanism driving deleterious effects (Fig. 2d). Moreover, 
synonymous mutations can adversely affect cell fitness by altering 
codon usage and mRNA folding (Fig. 2c,d).

Altogether, our machine learning model shows that the deleteri-
ous effects of synonymous mutations are driven by a combination 
of factors including splicing disruptions, codon bias and nucleotide 
conservation.
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to deleterious mutations, with this process repeated ten times. Each dataset 
was evaluated using tenfold cross-validation to obtain AUC values, represented 
by the ten points per group. c, The relative importance of various features in 
predicting the effects of synonymous mutations. d, Heat map of SHAP values, 
illustrating the supervised clustering method that categorizes data points on the 
basis of their feature explanations; f(x) corresponds to the predicted scores.
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Synonymous mutations generate aberrant splicing events
DS Finder identified disruption of splicing as a key mechanism through 
which synonymous mutations exert their deleterious effects. SpliceAI27, 
a widely used tool for predicting erroneous splicing events, revealed 
that 23.13% of synonymous mutations in the depletion direction could 
be deleterious, affecting essential gene expression (Supplementary 
Fig. 4a). Most of these mutations alter splice donor sites, with a few 
mutations, such as KIF11_A133, introducing new splice acceptors in 
transcripts (Supplementary Fig. 4b–e). Mutations causing splice donor 
loss accounted for 12% of the total, followed by mutations that create 
new splice donors, which accounted for 7% (Fig. 3a,b).

Additionally, a new model called AbSplice was developed to 
predict aberrant splicing caused by mutations in specific human tis-
sues28. Using AbSplice, we predicted new mutations, such as PLK1_R136 
(AGG > AGA) and TSR2_Q88 (CAG > CAA), that could lead to aberrant 
splicing in colon tissue (Fig. 3c). Overall, nearly one quarter of the 
synonymous mutations from the depletion screening could potentially 
lead to aberrant splicing events.

We selected a subset of these mutations for validation, using epe-
gRNAs with RTTs matching the reference sequence at each mutation 
site as controls to eliminate editing process effects. The BUB1B_R322 
(AGG > AGA) mutation, a top-ranked synonymous mutation from the 
depletion results (Fig. 1e) located at the junction of exon 7 and intron 
7 of BUB1B, disrupts the original splice donor site (donor loss type), 
resulting in intron retention (Fig. 3d). Interestingly, this mutation led to 
two abnormal transcript variants: one with complete intron 7 retention 
and another with a newly created splice donor site within intron 7, lead-
ing to a truncated intron retention (Fig. 3d). Both variants could lead to 
mRNA degradation because of the generated premature stop codon. 
We further validated the impact of this mutation on cell fitness and 
mRNA abundance (Fig. 3e–g). Furthermore, BUB1B_R322 (AGG > AGA) 
is also noted in ClinVar in persons with mosaic variegated aneuploidy 
syndrome 1 but labeled with ‘uncertain significance’, highlighting our 
screen can reveal synonymous mutations that may be misannotated in 
clinical databases. Another mutation, RPL11_V132 (GTG > GTC), disrupts 
a splice donor, causing retention of the intronic region and altering 
cellular phenotypes (Extended Data Fig. 7a–d).

EEF2_G332 (GGC > GGT) represents a different impact on splicing 
by generating a new splice donor within an exon (donor gain type). 
This new splice donor precedes the original, resulting in partial exon 
excision and a frameshift in the downstream sequence (Fig. 3h). This 
abnormal transcript significantly reduces cell fitness and mRNA lev-
els (Fig. 3i–k). A similar case is observed in KRAS_G75 (GGG > GGT) 
(Extended Data Fig. 7e–h). These findings suggest synonymous muta-
tions near exon–intron boundaries can induce aberrant splicing, affect-
ing gene expression and cellular phenotypes.

Synonymous mutations impact RNA stability and translation
In addition to aberrant RNA splicing, synonymous mutations can 
impact RNA folding and translation within cells (Fig. 2d). A specific 

mutation, PLK1_S2 (AGT > AGC), found early in the coding sequence 
of the essential gene PLK1, enhanced RNA stability (Fig. 4a). Despite 
both codons encoding serine, AGC is used more frequently than AGT 
(codon frequencies of 19.5 per thousand versus 12.1 per thousand, 
respectively), implying that changes in cell fitness might stem from 
alterations in mRNA folding rather than codon usage. Predicted analysis 
of mRNA structure before and after mutation revealed that the PLK1_S2 
(AGT > AGC) mutation enhanced the stability of the local mRNA struc-
ture near the start codon (Fig. 4b and Supplementary Fig. 5a–c).

To verify whether this mutation affected PLK1 expression, we 
conducted a western blot analysis to measure PLK1 protein levels. 
Results indicated that the WT RTT had no impact on PLK1 protein levels, 
whereas the PLK1_S2 (AGT > AGC) mutation led to decreased protein 
abundance (Fig. 4c). Additionally, this mutation did not impact on 
neighboring codons either upstream or downstream of the mutation 
site (Extended Data Fig. 8a), and the observed decrease in cell fitness 
was solely attributable to this single synonymous mutation (Fig. 4d).

Considering that the mutation-induced stem structure disrupted 
the original loose structure near the start codon of WT PLK1 mRNA 
(Fig. 4b), potentially impeding translation initiation and conferring 
a translation disadvantage, we further used ribosome sequencing 
(Ribo-seq) to assess translation at this site. The results indicated that 
the PLK1_S2 (AGT > AGC) mutation made ribosome binding at the 
start codon more challenging, without affecting transcription levels 
(Fig. 4e and Extended Data Fig. 8b). The difficulty in initiating transla-
tion consequently led to reduced protein expression. This scenario 
underscores the relationship between changes in RNA folding induced 
by synonymous mutations and their effects on the translation process, 
ultimately influencing cellular functions through altered protein levels.

Single-cell sequencing reveals gene expression effects of 
synonymous mutations
Through these studies, we elucidated potential mechanisms through 
which functional synonymous mutations influence biological pro-
cesses. Recognizing prior studies suggesting that synonymous muta-
tions can alter intracellular RNA abundance2, we aimed to systematically 
assess the impact of synonymous mutations identified from our screen-
ing on gene expression at a high-throughput level. To achieve this, we 
integrated a single-cell screening approach with our PRESENT, calling it 
DIRECTED-seq (direct epegRNA capture and targeted sequencing). We 
constructed a DIRECTED-seq epegRNA library targeting each synony-
mous mutation using the PE to systematically investigate their effects 
on gene expression. We selected nearly all synonymous mutations 
that were either enriched or depleted, excluding those within genes 
expressed at low levels, resulting in a total of 370 mutations. Addition-
ally, the library also included several negative controls: 15 nontargeting 
epegRNAs, 15 AAVS1-targeting epegRNAs and 10 epegRNAs targeting 
synonymous mutations that were not enriched.

HCT116-PEmax cells were transduced with this pooled library 
at a high MOI of about 5, followed by selection with puromycin.  

Fig. 3 | Impact of synonymous mutations on aberrant RNA splicing. a,b, The 
statistical analysis of synonymous mutations causing various aberrant RNA 
splicing events is presented using bar charts and pie charts. Different colors 
indicate different splicing impact events based on the prediction by SpliceAI. AL, 
acceptor loss; AG, acceptor gain; DG, donor gain; DL, donor loss. c, Integration 
of predictions from SpliceAI and AbSplice tools. d, Schematic depiction of 
the splicing alterations caused by the BUB1B_R322 (AGG > AGA) mutation. The 
transcript sequence information was obtained by sequencing the cDNA from the 
experimental and control groups. e, Validation of the effect of the BUB1B_R322 
(AGG > AGA) mutation on cell proliferation in HCT116 cells. f, Relative mRNA 
expression levels of BUB1B in experimental and control groups. The mRNA level 
of each sample was quantified by real-time qPCR and normalized by GAPDH, 
and the indicated relative mRNA level was normalized to that of AAVS1-targeting 
control cells. g, Analysis of editing outcomes for epegRNA targeting BUB1B_R322 

and controls by genome sequence amplification and NGS. h, Schematic depiction 
of the splicing alterations caused by the EEF2_G332 (GGC > GGT) mutation.  
The transcript sequence information was obtained by sequencing the cDNA from 
the experimental and control groups. i, Validation of the effect of the EEF2_G332 
(GGC > GGT) mutation on cell proliferation in HCT116 cells. j, Relative mRNA 
expression levels of EEF2 in the experimental and control groups. The mRNA 
level of each sample was quantified by real-time qPCR and normalized by GAPDH, 
and the indicated relative mRNA level was normalized to that of AAVS1-targeting 
control cells. k, Analysis of editing outcomes for epegRNA targeting EEF2_G332 
and controls by genome sequence amplification and NGS. Data are presented 
as the mean ± s.d. (n = 3 biological replicates for cell proliferation assay; n = 3 
technical replicates for real-time qPCR). P values were calculated using a two-
tailed Student’s t-test. **P < 0.01 and ****P < 0.0001.
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After 14 days of culture, we simultaneously captured the epegRNAs 
and transcriptomes from single cells (Fig. 5a). A custom primer 
designed from the evopreQ1 motif achieved the reverse transcrip-
tion of epegRNAs and the transcriptome library was generated using 
an oligo-dT reverse transcription primer (Extended Data Fig. 9a). 

Furthermore, bulk RNA sequencing (RNA-seq) was performed on 
cells from the same batch to evaluate the editing efficiency (Fig. 5a). 
The majority of epegRNAs were effective, showing an average editing 
efficiency of about 15% for mutations detectable at sufficient sequenc-
ing depth (Fig. 5b).
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We recovered 129,193 single cells, averaging 5.5 epegRNAs per 
cell, with each targeted synonymous mutation represented in approxi-
mately 1,692 cells (Fig. 5c,d). Consistent with previous findings29, a 
positive correlation was observed between the number of epegRNAs 
and unique molecular identifiers per cell (Extended Data Fig. 9b), 
suggesting sequencing depth as a potential confounding factor. To 
address this, we used a conditional resampling approach (SCEPTRE) for 
our differential expression analysis29. Nontargeting epegRNAs served 
as negative controls, showing no observable effects (Extended Data 
Fig. 9c,d). Ultimately, we identified 40 synonymous mutations that 
significantly influenced gene expression, at a 10% false discovery rate 
(FDR) (Fig. 5e and Supplementary Table 4).

A notable finding was the substantial decrease in EEF2 gene expres-
sion caused by the synonymous mutation EEF2_G332 (GGC > GGT), 
where expression dropped to 32% of its original level (log2FC = −1.63, 
adjusted P value = 3.39 × 10−248). Given EEF2’s essential role in cell fit-
ness, this significant reduction correlates with the mutation’s pres-
ence in the depletion direction of the screen. Similar effects were 
observed with synonymous mutations in other essential genes. For 
instance, substitution of GTG with GTC, GTT and GTA at RPL11_V132 
(log2FC = −0.488, −0.312 and −0.401, respectively, with adjusted  
P values of 2.52 × 10−141, 2.36 × 10−135 and 8.33 × 10−77, respectively) and 
substitution of AGG with AGA at BUB1B_R322 (log2FC = −0.702, adjusted 
P value = 5.16 × 10−11) significantly lowered gene expression, which 
corresponded with proven aberrant splicing events (Fig. 3d–k and 
Extended Data Fig. 7a–d). Conversely, some synonymous mutations, 
such as BRCA1_V863 (GTT > GTG), were found to increase gene expres-
sion (log2FC = 0.389, adjusted P value = 0.0713). Given BRCA1’s critical 
roles in DNA damage repair, cell-cycle checkpoint control and genomic 

stability maintenance, these mutations might substantially impact 
cellular functions and tumor suppression mechanisms (Fig. 5f and 
Supplementary Table 4).

These results from DIRECTED-seq effectively link specific muta-
tions to changes in gene expression, unveiling their potential biological 
impacts. Although changes in transcript abundance could be driven 
by several mechanisms, such as misregulated RNA splicing, not all are 
linked to such changes. For instance, BRCA1_V863 (GTT > GTG) may 
affect RNA stability independently of splicing disruptions (Supplemen-
tary Table 5). Mutations could destabilize the global RNA structure, 
leading to increased transcript degradation; conversely, they may 
enhance the stability of transcripts30. Additionally, transcripts con-
taining infrequently used codons during the early stage of translation 
elongation, referred to as the ramp, may also be subjected to degrada-
tion because of the slow translation speed of such transcripts31,32. These 
potential impacts highlight the need for further studies to explore 
how mutations influence transcript abundance and their broader 
biological effects.

Identifying new disease-linked synonymous mutations
We systematically studied functional synonymous mutations in our 
library using PRESENT and DIRECTED-seq. However, relying solely on 
screening and experimentation to uncover potential deleterious synon-
ymous mutations in clinical databases has its limitations. To overcome 
this, we used our novel machine learning model, DS Finder, trained 
on our screening data, to identify novel functional clinical mutations 
across a broader dataset (Fig. 6a). We focused on mutations related to 
colonic diseases in the ClinVar database, such as lactose intolerance and 
inflammatory bowel disease, which share similar genetic backgrounds 
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to the HCT116 cell line used in our studies. Using DS Finder, we scored 
585 clinically recorded synonymous mutations, most of which were pre-
viously annotated as benign or likely benign (Supplementary Table 6).

One notable example is G6PC3 c.G399A, associated with autoso-
mal recessive severe congenital neutropenia. Although annotated as 
‘likely benign’ in ClinVar, this mutation received the highest DS Finder 
score in our analysis and was supported by SilVA and CADD (Fig. 6b and 
Supplementary Table 6). This mutation disrupts RNA splicing, impair-
ing the gene’s normal function in a manner consistent with the disease 
mechanism (Fig. 6c). To validate the pathogenic potential of predicted 
synonymous mutations, we tested G6PC3 c.G399A in HCT116 cells. This 
mutation produced an incorrect transcript (Fig. 6d) and significantly 
reduced G6PC3 expression (Fig. 6e).

To determine DS Finder’s predictive thresholds and test its dis-
criminatory power, we selected 45 confirmed pathogenic mutations 
from the SilVA training set10 and other clinically relevant synonymous 

mutations with reported pathogenic effects (Supplementary Table 6). 
Alternative substitutions for these 45 mutations (e.g., if a pathogenic 
mutation was C > T, we also included C > G and C > A as controls) were 
included alongside 1,439 synonymous mutations without phenotypes 
from our screening as negative controls. DS Finder effectively distin-
guished among these three groups of mutations (Fig. 6f), particularly 
unreported alternative substitutions at the same site, demonstrating 
the sensitivity of our model.

Using the screening’s negative control group as a benchmark, a DS 
Finder score threshold of 0.138 yielded a recall of 46.7% (21/45) at a false 
positive rate of 5%, which was on par with other methods (Extended 
Data Fig. 10a,b). On the basis of this threshold, 31 potentially deleteri-
ous synonymous mutations were predicted. This threshold provides a 
high recall rate, allowing mutations above this threshold to be classified 
as potentially pathogenic, while those below it are considered likely 
benign. When the threshold was increased to 0.370, the false positive 
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rate dropped to 1%, resulting in predictions with greater accuracy and 
reliability classified as likely pathogenic. At this stricter threshold, 
three mutations were identified as likely pathogenic, G6PC3 c.G399A, 
ADAM17 c.C1632T and ADAM17 c.C315T (Supplementary Table 6).

Encouraged by these results and to expand the scope beyond 
colonic diseases, we extended our study to other tissues and organs. 
Considering the importance of genetic background, we applied PRE-
SENT to A549 and KYSE-30 cell lines using the same epegRNAeBAR library 
(Extended Data Fig. 10c–f and Supplementary Tables 7 and 8) and 
trained a prediction model (Extended Data Fig. 10g). The analysis of the 
screening data and the evaluation of model performance validated the 

reliability of the results, providing additional insights into synonymous 
mutations. Notably, consistent with findings in HCT116 cells, essen-
tial synonymous mutations constituted a small proportion in other 
cell lines (1.04% of A549 and 0.56% of KYSE-30). This was particularly 
evident in the context of inhibiting cell proliferation, where nonsyn-
onymous mutations continued to dominate.

Additionally, we launched a website called Hearing Silence (https://
search-synonymous-mutations.streamlit.app/), enabling open access 
to screening results from three cell lines and offering the DS Finder 
algorithm for free use. Overall, our model effectively identified novel 
pathogenic synonymous mutations in clinical databases, showing 
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Fig. 6 | Predicting deleterious synonymous mutations in clinical databases. 
a, Flowchart illustrating the process of training the DS Finder using screening 
data and its application to clinical data for identifying novel deleterious 
synonymous mutations. b, Prediction scores from DS Finder for synonymous 
mutations associated with colonic diseases. The horizontal axis represents the 
DS Finder score, while the vertical axis represents the number of mutations 
corresponding to each score. c, SHAP value waterfall plots for the top prediction 
result, G6PC3 c.G399A, highlighting how individual features influence the 
prediction outcomes. The black values on the left are the feature values, while 
red and blue bars represent features with positive and negative effects on the 
predicted deleterious synonymous mutations, respectively. The numbers next 
to the bars indicate the magnitude of each feature’s influence. d, Schematic 
depiction of the splicing alterations caused by the G6PC3 c.G399A mutation. 
The transcript sequence information was obtained by sequencing the cDNA 

from the experimental and control groups. e, Relative mRNA expression levels of 
G6PC3 in the experimental and control groups. The mRNA level of each sample 
was quantified by real-time qPCR and normalized by GAPDH, and the indicated 
relative mRNA level was normalized to that of AAVS1-targeting control cells. 
Data are presented as the mean ± s.d. (n = 3 technical replicates). The P value 
was calculated using a two-tailed Student’s t-test. **P < 0.01. f, DS Finder scores 
for known pathogenic variants, other substitutions at the same site of known 
pathogenic variants and nonphenotypic mutation controls from the screening. 
The black dashed line represents the selected threshold with a false positive 
rate of 5% and the red dashed line represents the selected threshold with a false 
positive rate of 1%. For the box plots, the center line represents the median, the 
box limits denote the upper and lower quartiles and whiskers extend to 1.5 times 
the interquartile range.
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potential for broad generalizability across diverse genetic disease 
backgrounds. Our findings also suggest that current clinical databases 
may underreport deleterious synonymous mutations, underscoring 
the value of predictive models for more precise annotations. This 
research underscores the potential of exploring additional functional 
synonymous mutations within the human genome, which is vital for 
understanding disease etiology and delving deeper into their molecu-
lar genetic mechanisms.

Discussion
In this study, we developed a high-throughput screening technique 
called PRESENT, using PEs to investigate functional synonymous 
mutations within the human genome. Overall, our findings indicate 
that the majority of synonymous mutations in the human genome 
are likely neutral, including those occurring in essential genes. This 
aligns with the prevailing understanding among geneticists, further 
supported by recent human genetics research33. Similar conclusions 
can also be drawn from screening data generated using base-editing 
approaches34,35. This contrasts with previous studies in yeast, where 
synonymous mutations appeared more consequential. Our library, 
which includes human homologs of the genes studied in yeast, did not 
show significant enrichment of these mutations, potentially because 
of differences between haploid yeast and diploid human cells and the 
greater complexity and larger intron regions in the human genome36. 
The low correlation between our saturation analysis results for RAN 
and those from a similar study in yeast22 may be partially attributed to 
differences in the genetic backgrounds of the two species. Neverthe-
less, mutation data from the yeast Gsp1/Ran protein still suggest that 
synonymous mutations are generally neutral (Extended Data Fig. 5d). 
Therefore, we propose that the non-neutral effects of synonymous 
mutations observed in yeast cannot be broadly extrapolated to the 
human genome, where most synonymous mutations are likely to be 
neutral or nearly neutral.

Our study effectively addresses and avoids shortcomings asso-
ciated with previous work3. For our large-scale screening, we imple-
mented a library design that included appropriate positive and negative 
controls, with replicates established using the eBAR methodology. For 
validation, we used AAVS1-targeting and nontargeting epegRNAs as 
negative controls and specifically designed WT RTT epegRNAs to 
eliminate the influence of the PE process on the results. Moreover, our 
use of PE without relying on additional sgRNA to produce nicks greatly 
minimizes the risk of indels and genomic structural variations often 
associated with Cas9-based mutation methods. In terms of statistical 
power, our library includes a larger number of genes, mutations and 
mutation types compared to the yeast study. As a result, our large-scale 
screening is well equipped to uncover the genuine biological effects of 
synonymous mutations in the human genome.

Through comprehensive population-level screening incorporat-
ing multiple embedded controls and stringent quality control analyses, 
we identified and further characterized 409 synonymous mutations 
that impact cell fitness in HCT116 cells. Among these synonymous 
mutations, changes involving C•G base pairs were particularly impact-
ful on cell fitness. This highlights the importance of codons ending 
in C or G (also named GC3) in genomic structure and their specific 
responses to synonymous mutations37. These mutations may affect 
CpG content within gene sequences, a feature incorporated into our 
machine learning model, DS Finder. Additionally, high-frequency 
codons often are GC3, which may relate to the stability of anticodon 
pairing during translation. The pronounced biological effects of GC3 
mutations suggest that they are subject to negative selection, maintain-
ing genomic stability over evolution time.

Our observations also show that synonymous mutations can 
alter gene expression levels, echoing findings from yeast studies2. 
These effects were systematically analyzed in human cells using 
DIRECTED-seq, primarily because of aberrant splicing events on mRNA. 

Dominant effects were observed at splice donor sites, likely because of 
the more conserved sequences upstream of these sites compared to 
downstream of splice acceptor sites38. Whether predicted or identified 
by DS Finder, the impact on RNA splicing is a substantial contributor to 
the biological effects of synonymous mutations. One possible expla-
nation is that synonymous mutations undergo evolutionary selection 
closely tied to the transcription process, helping to prevent the genera-
tion of unwanted transcripts within the cell39. When gene expression 
is not altered, translation-coupled biological mechanisms may have 
a role. For example, we observed that increased mRNA stability near 
the start codon could impede translation initiation, reducing protein 
expression levels, consistent with phenomena observed in prokary-
otes40 and various genomic studies41. Changes in protein levels might 
also be linked to variations in codon usage frequency. In this study, we 
outlined a summary of possible explanations. While there are many 
other potential biological mechanisms through which synonymous 
mutations could affect human cell functions, further experimental 
investigations are necessary.

Additionally, we developed DS Finder, a prediction model for 
deleterious synonymous mutations. DS Finder’s training set is more 
extensive than that of SilVA10, which includes only 33 experimentally 
verified deleterious mutations and offers greater specificity than 
CADD11, which predicts all mutation types. We demonstrated that DS 
Finder effectively distinguishes between known pathogenic muta-
tions and mutations without phenotypes, further emphasizing its 
strong sensitivity. DS Finder also considers cell type, tissue type and 
gene background in its predictions, enhancing its accuracy and use in 
clinical data analysis, making it invaluable for future clinical research 
and diagnostics.

However, we recognize certain inherent limitations in our screen-
ing approach. Firstly, the scarcity of sufficient synonymous mutations 
known to influence cell fitness in prior genetic research poses chal-
lenges in establishing robust positive controls, complicating the pre-
cise quantification of potential false negatives in the screen. Secondly, 
despite optimizing editing efficiency by using naturally MMR-deficient 
HCT116 cells with epegRNA and extending the screening duration to 
35 days, the overall editing level of PE still somewhat restricts detec-
tion sensitivity. The stringent threshold selected for this screening was 
designed to ensure a low false positive rate, but inherently low editing 
efficiency means that mutations with subtle fitness impacts may remain 
undetected. Therefore, mutations with less pronounced effects might 
be overlooked and should be further explored in subsequent studies. 
Adjusting the detection threshold could potentially increase sensitivity 
and recall rates. In addition, we emphasize that population-level screen-
ing alone cannot conclusively characterize the effects of individual 
synonymous mutation without experimental validation. Nevertheless, 
these limitations do not affect the statistical validity of our group-level 
analyses, as these comparisons systematically evaluated fitness effects 
across all mutation types under uniform detection conditions. Future 
implementation of more efficient PEs, such as the recently reported 
PE7 system42, may further improve sensitivity for detecting subtle 
phenotypic variants.

Overall, this study provides new insights and experimental evi-
dence on the impact of synonymous mutations in the human genome 
and their potential biological mechanisms. It underscores the pre-
cision of the PE over traditional CRISPR–Cas and base editors for 
high-throughput genomic studies43–48. Looking ahead, PRESENT and 
DIRECTED-seq provide useful tools in characterizing and exploring 
mechanisms behind clinical drug-resistant mutations and other genetic 
phenomena.
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Methods
Cell lines and cell culture
The HCT116 cell line (CCL-247, American Type Culture Collection 
(ATCC)) and HEK293T cell line (CRL-3216, ATCC) were obtained from 
EdiGene, the A549 cell line was purchased from ATCC (CRM-CCL-185) 
and the KYSE-30 cell line (ACC 351, German Collection of Microor-
ganisms and Cell Cultures) was obtained from Z. Liu’s laboratory 
at Peking Union Medical College. The HCT116-PEmax, A549-PEmax 
and KYSE-30-PEmax cell lines were generated in this study. HCT116, 
HCT116-PEmax, KYSE-30 and KYSE-30-PEmax cells were cultured 
in RPMI 1640 medium (Gibco, C11875500BT). HEK293T, A549 and 
A549-PEmax cells were cultured in DMEM (Gibco, C11995500BT). 
All cultures were supplemented with 10% FBS (Biological Industries, 
04-001-1ACS) and 1% penicillin–streptomycin. Cultures were main-
tained at 37 °C in a 5% CO2 environment and regularly checked for 
Mycoplasma contamination using the Mycoplasma detection kit 
(Yeasen, 40612ES60).

Plasmids
The pLenti-PEmax-P2A-EGFP expression plasmid was con-
structed by cloning the PEmax-P2A-EGFP sequence from pCMV- 
PEmax-P2A-GFP (Addgene, 180020). The target sequence was 
amplified by PCR using TransStart FastPfu fly DNA polymerase 
(TransGen Biotech, AP231-22) during the cloning procedure. The 
epegRNA expression vectors (pLenti-U6-epegRNA-SV40-puro 
or pLenti-U6-epegRNA-SV40-mCherry) were derived from the 
pLenti-sgRNA(lib)-puro vector (Addgene, 119976). All candidate epe-
gRNAs for validation (Supplementary Table 9) were cloned into the 
vector by Golden Gate assembly and all plasmids were verified through 
Sanger sequencing by Tsingke Biotech (Beijing).

Design and construction of the epegRNA library
Library design. The design of epegRNAs involved identifying all poten-
tial spacers from protein-coding genes, followed by generating and 
adjusting RTTs on the basis of genomic annotation to incorporate the 
desired mutations and then designing linker sequences. The GRCh38.
p14 genome and MANE50 transcript annotations were downloaded 
from the National Center for Biotechnology Information (NCBI), with 
the search scope including entire transcripts and 30 nt upstream and 
downstream of exons. Quality control was based on three criteria: (1) 
G+C content between 20% and 80%; (2) absence of poly(T) sequences; 
and (3) unique genomic alignment to prevent potential off-target 
effects, analyzed using the Bowtie software (version 1.2.1.1)51 with 
the parameters set to ‘-k 2 -v 0’. Following spacer design, PBS and RTT 
lengths were determined. Given that a 13-nt PBS length is associated 
with optimal efficiency, this was the chosen length24. Considering cov-
erage and efficiency, the initial RTT length was set to 17 nt, subject to 
trimming if the sequence commenced with a C, accepting a minimum 
RTT length of 13 nt. At the design’s inception, all synonymous muta-
tions were considered, with adjustments made to the original RTT to 
accommodate all possible synonymous variations by moving along the 
codon. The design principle for linkers aimed to minimize secondary 
structural interactions with other components, accomplished using 
the pegLIT algorithm (version 1.0.1)15. Sequences containing BsmBI 
sites were excluded.

Six epegRNAs were designed for each gene to achieve knockout, 
either by replacing a codon with TAG at 30%, 40% and 50% of the gene’s 
coding region length or by inserting an A to induce a premature stop 
codon or frameshift mutation. Negative controls included nontarget-
ing and AAVS1-targeting epegRNAs.

Library construction. Oligonucleotides were synthesized by Synbio 
Technologies and epegRNA sequences were PCR-amplified using 
Phusion Hot Start Flex 2× master mix (New England Biolabs, M0536S) 
with primers targeting the flanking sequences of the oligos. After 

purification with a DNA clean and concentrator 25 kit (Zymo Research, 
D4034), epegRNA sequences were respectively cloned into three 
types of pLenti-U6-epegRNAeBAR-SV40-puro vectors through Golden 
Gate assembly (eBAR1, CACT; eBAR2, GCAG; eBAR3, AGCA). The 
Golden Gate product of each group was separately purified with 
a DNA Clean and Concentrator 5 kit (Zymo Research, D4014) and 
electroporated into E. coli HST08 Premium Electro-Cells (TaKaRa, 
9028). The plasmids of each epegRNAeBAR library were extracted 
using EndoFree Plasmid Maxi Kit (Qiagen, 12362) and further mixed 
in a 1:1:1 molar ratio. Next, the epegRNAeBAR library plasmids were 
cotransfected with lentiviral packaging plasmids pMD2.G (Addgene, 
12259) and pCMVR8.74 (Addgene, 22036) into HEK293T cells using 
the X-tremeGENE HP DNA transfection reagent (Roche, 6366244001) 
to generate the lentiviral library.

Functional screening of synonymous mutations
HCT116-PEmax, A549-PEmax and KYSE-30-PEmax cells were trans-
duced with the lentiviral library at a high MOI of 3 with a high coverage 
for each epegRNA (1,500-fold; 500-fold for each eBAR). Then, 48 h 
after transduction, the library cells were cultured with 1 μg ml−1 (KYSE-
30-PEmax), 1.5 μg ml−1 (A549-PEmax) or 2 μg ml−1 (HCT116-PEmax) puro-
mycin (Solarbio, P8230) for 2 days. The day that puromycin treatment 
ended was denoted as day 0 of the screening and some of the viable 
cells were harvested as the reference group. During the screening, 
one library size of cells was maintained and passaged every 3 days and 
harvested on day 35 as the experimental group.

Genomic DNA isolation and sequencing
Genomic DNA was extracted from reference cells and experimental cells 
using the DNeasy blood and tissue kit (Qiagen, 69506). All extracted 
genomes were used as PCR templates and the epegRNA sequences with 
eBAR were PCR-amplified using a KAPA HiFi HotStart ReadyMix PCR kit 
(Roche, KK2631) with five pairs of primers (Supplementary Table 10). 
Then, the PCR products were mixed together and purified with a DNA 
clean and concentrator 25 kit (Zymo Research, D4034), followed by 
next-generation sequencing (NGS) with paired-end 150-bp reads on 
the Illumina HiSeq X TEN platform. The three different cell libraries 
were performed separately as above.

Computational analysis of screens
The first step was to extract information from sequencing data. PAN-
DAseq (version 2.11)52 was used to assemble two FASTQ files, capturing 
the target sequences based on the sequences at both ends of the PCR 
product. To further improve the success rate of extraction, we relaxed 
the search requirements in the presence of mismatches, using BLASTn 
(version 2.11.0+)53 to search for scaffold sequences and structural motif 
sequences, and then extracted the corresponding sequences after 
determining the coordinates. The sequences extracted in the first two 
steps were combined and analyzed statistically.

In the second step of statistical analysis, improvements were made 
on the basis of an algorithm previously developed by our laboratory54. 
On the basis of the ZFC algorithm, each eBAR was treated as an inde-
pendent experiment and adopted a smoother fitting method (locally 
weighted scatterplot smoothing regression)55. To elevate the statistical 
level from epegRNAeBAR to epegRNA, RRA was used for rank aggrega-
tion analysis as an indicator of significance statistics. This method was 
referred to as ZFC-eBAR.

The screen score and fitness score were defined as follows:

Screen score = −log10 (RRA) × {
1, if RRAup < RRAdown

−1, else

Fitness score =
Screen scorex1 + Screen scorex2

2
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where {x1, x2,… , xn} are epegRNAs ranked in ascending order accord-
ing to RRA values. If a mutation corresponds to only one epegRNA 
(that is, n = 1), then x2 = x1.

Validation of candidate mutations identified from the screen
All epegRNAs for validation were cloned into the pLenti-U6- 
epegRNA-SV40-mCherry vector individually. The AAVS1-targeting 
and nontargeting epegRNAs were served as negative controls. The 
lentivirus was transduced into HCT116-PEmax cells at an MOI > 1. The 
percentage of mCherry-positive cells was quantified through flow 
cytometry analysis (BD LSRFortessa SORP, Becton Dickinson) every 
3 days. The first flow cytometry analysis started 3 days after infection 
(labeled as day 0), serving as a baseline for data normalization. FlowJo 
version 10 was used for flow cytometry data analyses.

Detection of the prime-editing outcomes by NGS analysis
Genome preparation. All epegRNAs were cloned into the 
pLenti-U6-epegRNA-SV40-puro vector individually. The lentivirus 
was transduced into HCT116-PEmax cells at an MOI > 1 and were fur-
ther treated with 2 μg ml−1 puromycin for 2 days. Then, 14 days after 
transduction, epegRNA-infected cells were collected and subjected 
to genome DNA isolation using the DNeasy blood and tissue kit (Qia-
gen, 69506). For all the experimental and reference cells, sequences 
of approximately 200 bp near the target site of each epegRNA were 
amplified using specific primers (Supplementary Table 10) by Prime-
STAR GXL premix (TaKaRa, R051A), followed by NGS analysis on the 
Illumina HiSeq X TEN platform.

NGS analysis. After sequencing data quality control with FastQC 
(version 0.11.9; http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) and adaptor removal with fastp (version 0.12.4)56, PANDAseq 
(version 2.11)52 was used to assemble paired-end reads. Using sequence 
information from both ends, we precisely identified and extracted DNA 
regions containing the expected editing mutations. The self-developed 
ZFC-eBAR algorithm was then applied to analyze the screening data. To 
assess sensitivity, we simulated deleterious variants on the basis of the 
counts of 492 effective but nonenriched AAVS1-targeting epegRNAs. 
In this simulation, the control group remained unchanged, while the 
experimental group reduced counts by a specified percentage to repli-
cate a known degree of dropout under free-riding effects. Additionally, 
efficiency analysis was visualized using WebLogo (version 0.0.0)57.

Features analysis of identified mutations from the screen
We obtained 75 features (Supplementary Table 5) and used the Wilcox 
test to examine whether there were significant differences among 
features of synonymous mutations. When genomic inconsistencies 
occurred, LiftOver (online version)58 was used for conversion.

Real-time qPCR analysis
RNA of the cultured cells infected by candidate epegRNA lentivirus 
was extracted using the Quick-RNA miniprep kit (Zymo Research, 
D1054) and complementary DNA (cDNA) was synthesized using HifairIII 
first-strand cDNA synthesis supermix (Yeasen, 11137ES60). Real-time 
qPCR was performed using TB Green Premix Ex Taq II (TaKaRa, RR820A) 
on Roche LightCycler96 real-time PCR system. All cDNA samples were 
assayed in triplicate and the relative RNA expression level of each sam-
ple was normalized by GAPDH. All the primers used for real-time qPCR 
are listed in Supplementary Table 10.

Bulk RNA-seq and data analysis
cDNA library construction and sequencing. The total RNA of each 
sample for RNA-seq was extracted using Quick-RNA miniprep kit  
(Zymo Research, D1054) and the RNA-seq libraries were prepared as 
previously described59. All samples were sequenced on the Illumina 
HiSeq X TEN platform.

Data analysis. Quality control of the data was performed using FastQC 
(version 0.11.9; http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/), followed by the removal of adaptors with fastp (version 
0.12.4)56. The STAR aligner (version 2.5.2b)60 was used for mapping to 
the GRCh38.p14 reference genome and gene expression levels were 
extracted using RSEM (version 1.2.28)61.

The same quality control and alignment procedures were 
applied to the single-cell sequencing library. Subsequently, to esti-
mate editing efficiency, SAMtools (version 1.7)62 mpileup was used 
to extract base information at specific sites and calculate the muta-
tion proportion. The estimated editing efficiency was calculated as 
maximum{MUT reads×library size

WT reads×MOI
, 1}.

Single-cell RNA library preparation and sequencing
When the cell library for single-cell sequencing was cultured to day 14, 
we used the 10x Genomics 5′ HT v2 kit for single-cell isolation and cDNA 
library construction63, following the standard procedures outlined 
in the manual. Briefly, approximately 120,000 cells were loaded on 
the 10x Genomics chip (Chromium Next GEM Chip N single-cell kit, 
PN-1000357). After cell capture and lysis, the epegRNA and transcripts 
were captured subsequently and followed by cDNA synthesis through 
reverse transcription (Chromium Next GEM single-cell 5′ HT kit v2, 
PN-1000356). Notably, the reverse transcription primer sequence used 
for epegRNA capture was 5′-CGTAACTAGATAGAACCGCG-3′ (5 pmol). 
Samples were sequenced on the Illumina NovaSeq 6000 platform.

Processing of single-cell RNA-seq data
Firstly, mRNA and epegRNA within cells were extracted using Cell 
Ranger (version 7.0.0), with the genome reference set to refdata- 
gex-GRCh38-2020-A. For epegRNA searching, the pattern was specified 
as R2’s (BC)GCACCG. Given that sequencing depth poses a confound-
ing factor, the single-cell data were analyzed using SCEPTRE (version 
0.9.1)29. In the process of assigning epegRNA, we opted for the mixture 
method. Synonymous mutations considered to impact expression were 
those with an FDR < 0.1 following Benjamini–Hochberg adjustment.

Expression plots for each epegRNA and target gene, alongside 
LFC calculations, were conducted using Seurat (v4.4.0)64. The adopted 
filtering criteria were nFeature_RNA > 1,000, nFeature_RNA < 8,000, 
nCount_RNA < 40,000 and percent.mt < 20. The choice of threshold 
for assigning epegRNA influenced the LFC, generally showing a trend 
where stricter thresholds resulted in more pronounced absolute values 
of LFC. Consequently, for each pair, the threshold corresponding to 
the maximum absolute LFC was selected, provided the cell number 
was adequate (cell number ≥ 100), indicating the ‘cleanest’ state for 
the with epegRNA group.

Ribo-seq and data analysis
The ribosome profiling service was provided by Cloud-Seq Biotech by 
following the manual for the GenSeq Ribo profile kit (GenSeq, GS-LC-
026). Briefly, after treatment with cycloheximide, cells were lysed with 
lysis buffer and then digested with nucleases. The digested samples 
were purified with size-exclusion chromatography to obtain ribosome 
footprints. The ribosome-protected RNA fragments were selected by 
PAGE and subjected to ribosomal RNA removal. The purified RNA was 
end-repaired and ligated with a 3′ adaptor and reverse-transcribed to 
cDNA. The cDNA was purified by PAGE, circularized and then amplified 
by PCR. The amplified library was purified and sequenced on Illumina 
NovaSeq 6000 platform.

Paired-end reads were obtained from the sequencer. First, the 
quality of the raw data was controlled by Q30. Adaptors were removed 
and low-quality reads were trimmed by cutadapt software (version 
1.9.3) to obtain high-quality clean reads. The clean reads were aligned 
to the reference genome using Tophat2 software (https://ccb.jhu.
edu/software/tophat/index.shtml). Then, HTSeq software (version 
0.9.1)65 was used to get the raw count and edgeR66 was used to perform 
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normalization. Finally, differentially expressed mRNAs were identified 
by P value and fold change.

Machine learning model construction and testing
For dataset construction, we extracted samples at a 1:10 ratio of posi-
tive to negative instances, repeating the random extraction process 
ten times. Considering 22 features that showed significant differences 
across various types of synonymous mutations, nine different machine 
learning models were evaluated using fivefold cross-validation, with 
the AUC as the evaluation metric, aggregating performance across ten 
dataset subsets. The best-performing model, CatBoost, was further 
optimized through grid search, using the same evaluation metric to 
identify the most effective model configuration. The implementa-
tion was performed using Python (version 3.8.10) with scikit-learn 
(version 1.3.2) and CatBoost (version 1.2.2). Shapley additive explana-
tions (SHAP) values were calculated and visualized using the SHAP 
package (version 0.44.1) to understand the importance of different 
features. Our methodology was compared against SilVA (version 1.1.1, 
without UNAfold or ViennaRNA)10 and CADD (version 1.7)11, using their 
provided scores to compute AUC for comparison. Further details are 
described below.

Dataset construction. Deleterious synonymous mutations (defined as 
those with values ≤ mean − 4 s.d.) were fully included to construct the 
dataset. Neutrality (defined as those within mean ± 1 s.d.) was randomly 
sampled at a ratio of 1:10, with random seeds fixed at 1 to 9 and 42.

Feature construction. We selected feature candidate sets from several 
different sources:

(1) DepMap data: We downloaded Chronos Score, CERES Score, 
gene effect, dependency and gene expression from DepMap 
(22Q2).

(2) HCT116 data: We calculated TPM (transcripts per million) for 
AAVS1, PEmax, WT and nontargeting using bulk RNA-seq in 
this study. Quality control was performed on raw data using 
FastQC (version 0.11.9; http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) and adaptors were trimmed using 
fastp56. The sequencing data were aligned to the genome us-
ing STAR60 and TPM was obtained using RSEM61.

 (3) Codon frequencies: We obtained codon frequencies on-
line (http://www.kazusa.or.jp/codon/)67.

(4) Splice site prediction: We used SpliceAI to predict splice site 
changes27, generating eight values: DS_AG (delta score, ac-
ceptor gain), DS_AL (delta score, acceptor loss), DS_DG (delta 
score, donor gain), DS_DL (delta score, donor loss), DP_AG 
(delta position, acceptor gain), DP_AL (delta position, accep-
tor loss), DP_DG (delta position, donor gain) and DP_DL (delta 
position, donor loss). The highest delta score among the four 
was taken as the splicing score. Delta scores ranged from 0 to 
1, indicating the probability of splice changes. SpliceAI refer-
ence thresholds were 0.2 (high recall), 0.5 (recommended) 
and 0.8 (high precision).

(5) Splicing scores: We obtained splicing scores for correspond-
ing tissues from AbSplice.

(6) Synonymous mutation analysis: We used SilVA to analyze syn-
onymous mutations10, providing SilVA prediction scores and 
rankings, along with RSCU, dRSCU, GERP scores, CpG sites, 
exon CpG scores, SR, FAS6, MES, MEC, PESE and PESS.

(7) Transcript information: We recorded transcript length and 
the relative position of the site within the transcript.

(8) RNA folding: We predicted RNA folding energy using RNAfold68, 
calculating free energy for mutated and WT transcripts, the 
change in energy and the proportion of energy change.

(9) CADD scores: We recorded RawScore and PHRED from CADD11.

Feature selection. We calculated the significance of differences in 
screen scores between groups of synonymous mutations using a 
t-test, selecting a union of significant features across different cell 
lines, totaling 22 features. Numeric features were standardized using 
StandardScaler and missing values were imputed with zero, assuming 
no specificity for these features. CatBoost handled categorical fea-
tures directly while, for other models, ‘mutated codon position 3’ and 
‘original codon position 3’ were transformed using one-hot encoding.

Model testing. We tested SVM, random forest, gradient boosting, 
logistic regression, k-nearest neighbors, naive Bayes, LDA, XGBoost, 
LightGBM and CatBoost, initially using default parameters. Fivefold 
cross-validation was used for evaluation, calculating the AUC across 
ten dataset subsets.

CatBoost parameter tuning. Focusing on AUC as the primary per-
formance metric, the model was set to run in silent mode to minimize 
output during training. The loss function was ‘logloss’, with a depth 
of 6, ‘uniform’ feature_border_type and ‘depthwise’ grow policy. The 
parameter search range included iterations, subsample size, random 
strength, column sampling rate and L2 regularization strength, cho-
sen to explore potential performance improvements. A grid search 
with fivefold stratified cross-validation identified the optimal model 
configuration on the basis of roc_auc scoring.

Result presentation. Final results were visualized using the R package 
ggplot2 (version 3.3.6).

Statistical analysis
GraphPad Prism 9 was used for statistical analyses. The statistical tests, 
exact values and descriptions for n are provided in figure legends. 
Unless otherwise stated, n represents the number of biological rep-
licates of the samples. Statistical significance was evaluated using a 
two-tailed Student’s t-test, with significance levels indicated as follows: 
*P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The plasmids used in this study were deposited to Addgene or are 
available upon request. All raw sequencing data were deposited to the 
Genome Sequence Archive in National Genomics Data Center, China 
National Center for Bioinformation and Beijing Institute of Genomics, 
Chinese Academy of Sciences under accession number HRA007615. 
The human reference genome used in this study is GRCh38.p14 from 
the NCBI (GCF_000001405.40). Databases involved in this study 
included ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), SynMICdb 
(https://synmicdb.dkfz.de/rsynmicdb/), DepMap (https://depmap.
org/portal/), GWAS Catalog (https://www.ebi.ac.uk/gwas/) and the 
Medical Research Council Integrative Epidemiology Unit OpenG-
WAS (https://gwas.mrcieu.ac.uk/). Source data are provided with 
this paper.

Code availability
The ZFC-eBAR (version 0.2.0) algorithm and DS Finder (version 0.1.0), 
implemented in Python 3, can be downloaded from GitHub (https://
github.com/UronicAcid/ZFC-eBAR and https://github.com/Uroni-
cAcid/DS-Finder). Other processed data and code can be found on 
Zenodo (https://doi.org/10.5281/zenodo.14639522)69.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Design of the epegRNA library for screening functional 
synonymous mutations and development of the experimental system 
using PEmax. a, Diagram of the epegRNAeBAR library structure. RTT: reverse 
transcription template, PBS: primer binding site. b, Principles and workflow for 
designing epegRNAs within the library. Searches for NGG PAMs are conducted on 
the representative transcript of each gene to determine the spacer sequence, PBS 
sequence, and RTT, followed by a first filtering step. Comprehensive searches 
along the coding region are then performed to achieve saturation mutagenesis  
of synonymous mutations, with linker sequences subsequently designed  
and a secondary filter applied, resulting in the final epegRNA sequences.  
c, Distribution of expression levels and essentiality of genes within the library in 
HCT116 cells. Red dots represent the 11 genes targeted for complete saturation 
mutagenesis, blue dots represent the 56 genes targeted for synonymous 
saturation mutagenesis, and gray dots represent all other genes. d, Histogram 

of the number of epegRNA designed for mutations in the library. e, Statistics 
of the types of amino acid substitutions for the 11 genes targeted for saturation 
mutagenesis. The y-axis represents the original amino acid, the x-axis represents 
the amino acid post-PE editing, and the values represent the number of 
epegRNAs designed for each substitution. The histogram on the right illustrates 
the coverage of the corresponding amino acids, indicating the proportion  
of amino acids that can be targeted among all amino acids in the 11 genes.  
f, Clustered heatmap displaying Pearson correlation coefficients of the whole 
transcriptome between HCT116-PEmax cells and wild-type (WT) HCT116 cells, 
as well as after the addition of nontargeting (NT) epegRNA and AAVS1-targeting 
epegRNA. g, Graph showing the changes in editing efficiency over a 28-day 
period of continuous culture in HCT116-PEmax cells with the addition of two test 
epegRNAs targeting different sites. The data is presented as the mean ± s.d.  
(n = 3 biological replicates).
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Extended Data Fig. 2 | Decoding and ROC analysis of the epegRNAeBAR library.  
a, Diagram illustrating the genomic PCR process performed on the cell library 
post-screening. b, Algorithm description of ZFC-eBAR (see Methods for details). 
c, The x-axis represents the number of genes corresponding to the positive 
controls (epegRNAs that introduces nonsense and frameshift mutations on 
essential genes), while the y-axis represents the AUC calculated using  
these positive controls as well as negative controls (AAVS1-targeting and 
nontargeting epegRNA). The score used to calculate AUC is the screen score.  
d, Similar to c, but nonsense/frameshift mutations at the same site are regarded 

as the same mutation. The score used to calculate AUC is the Top score. e, ROC 
analysis of epegRNAs in highly essential genes (Chronos score < −2.5) based on 
different scores. The red point represents the threshold we selected. The red 
line represents the ROC curve for the top1 score of epegRNA, the dark blue line 
represents the ROC curve for the top2 mean score of epegRNA, and the green 
line represents the ROC curve for the all mean score of epegRNA. f, Spearman 
correlation of zLFC for the top 2 ranked epegRNAs in highly essential genes 
(Chronos score < −2.5).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Evaluation of screening reproducibility and detection 
sensitivity. a, Correlation of zLFC values between two eBARs replicates for 
epegRNA with the third eBAR’s |LFC| ≥ 0. b, Correlation of zLFC values between 
two eBARs for epegRNAs with |AGCA LFC| ≥ 1 and |CACT LFC| ≥ 1. c, Pearson 
correlation analysis of LFC values between two eBARs across varying thresholds 
of absolute LFC values from the third eBAR. The x-axis indicates the absolute 
LFC threshold applied to each eBAR, while the y-axis represents the Pearson 
correlation coefficient between the remaining two eBARs. d, Correlation of  
LFC values between two eBARs for epegRNAs with the third eBAR’s |LFC| ≥ 1.  
e, Correlation of LFC values between two eBARs for epegRNAs with the third 
eBAR’s |LFC| ≥ 0. For panels a, b, d, and e, Pearson correlation coefficient (r) is 
labeled. N indicates the number of epegRNAs shown in these figures (for panels a 
and e, excluding those with zero sequencing read counts and black lines indicate 
density-based contours). f–g, Correlation analysis of enriched mutations in 
the HCT116 screen across three eBARs, based on LFC values (f) or zLFC values 

(g). Diagonal panels show histograms of value distributions, lower left panels 
show scatter plots of pairwise correlations, and upper right panels present 
Pearson correlation coefficient (r). The dataset includes 1,717 epegRNAs with 
nonsynonymous mutations and 417 epegRNAs with synonymous mutations. 
h, Boxplot of the relationship between the degree of reduction in counts of 
simulated deleterious variants in the experimental group (x-axis) and the 
calculated |screen score| (y-axis). n = 492 per group (number of epegRNAs).  
The gray dashed lines correspond to thresholds of 3 and 2.2. Boxplots are 
depicted as follows: the center line represents the median, the box limits denote 
the upper and lower quartiles, and whiskers extend to 1.5 times the interquartile 
range. i, Corresponding to h, the x-axis represents the average counts of these 
simulated deleterious variants in day 0, and the y-axis indicates the percentage 
reduction in day 35. Green labels highlight points where the |screen score| after 
reduction exceeds the selection threshold (3).
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Extended Data Fig. 4 | Performance of synonymous mutations in human 
homologous genes of the yeast. a, Comparison of fitness score distributions 
for synonymous mutations across three groups: 67 saturation-mutated genes 
(synonymous mutations only), 11 saturation-mutated genes (including all 
mutation types), and human homologous genes of the yeast (excluding RPL39 
due to limited data). P values were calculated using a two-sided Wilcoxon test.  
b, Distribution of essentiality for human homologous genes of yeast in HCT116 
cells, data of RPL29 are missing in DepMap. The corresponding positions are 

labeled in purple. c, Shown in order as in b, distribution of fitness scores for 
synonymous, nonsense and frameshift mutations for each gene. From left to 
right, the mutation counts for each group are 46/5 (RPS7), 269/6 (TSR2), 459/6 
(BUD23), 167/6 (ATP6V1F), 791/6 (PAF1), 233/6 (GET1), 131/6 (VMA21), 162/6 
(LSM1), 193/6 (UBE2B), 323/6 (INO80C), 487/6 (PRPS2) and 80/6 (RPL29), with 
n = 494 for AAVS1 and n = 981 for Nontargeting. Boxplots are depicted as follows: 
the center line represents the median, the box limits denote the upper and lower 
quartiles, and whiskers extend to 1.5 times the interquartile range.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Comprehensive analysis of different mutation types 
and their effects in saturation mutagenesis. a, Correlation of BLOSUM62 
scores with the screening results for 11 genes. Mean scores were compared to 
nontargeting controls, with mutations showing adjusted P < 0.05 (two-tailed 
Student’s t test with Benjamini–Hochberg correction) marked in black. Only 
mutations with counts ≥10 were included. b, Upper panel displays a heatmap 
of screen scores for all mutations in RAN. Light gray indicates amino acids not 
included in the library. Synonymous mutations are marked with dots, and dashed 
lines denote domain boundaries. The lower panel illustrates domain annotations 
for RAN. c, Top scores for missense and synonymous mutations are compared 
across all regions of RAN, including G3 Switch II and Q69, n indicates the number 
of mutations. d, Comparison of top screen scores from our study with scores 
from ref. 22. Spearman correlation coefficient = 0.3076786. e, Detailed  
Mutation Analysis in POLR2L. Middle panel: Heatmap of screening scores for 
all mutations in POLR2L. Light gray indicates amino acids not designed in the 

screening library. Dots indicate synonymous mutations. Dashed lines represent 
four Zn2+ binding sites. Lower panel: Average top scores across each position, 
with three designed Zn2+ binding sites highlighted in red. Left panel: Average top 
scores by amino acid, with the two most depleted ones shown in orange. f, Cell 
fitness effects of different amino acid (aa) substitutions (statistical methods 
as a). g, The distributions of fitness scores for mutation types with a significant 
impact on cell fitness. From left to right, the mutation counts are 1,475, 182, 258, 
113, 233, 230, and 850 respectively. h–i, Distribution of enriched mutations 
for various amino acid substitutions (h) and among different types of base 
pair substitutions (i) in both saturation synonymous mutations and clinical 
synonymous mutations. Top score represents the maximum |screen score| value 
for different epegRNAs corresponding to each mutation in the screen. For c and 
g, boxplots are depicted as follows: the center line represents the median, the box 
limits denote the upper and lower quartiles, and whiskers extend to 1.5 times the 
interquartile range.
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Extended Data Fig. 6 | Distribution of different key features for synonymous 
mutations. a, Distribution of SpliceAI scores for synonymous mutations.  
b, Distribution of RNA folding energy changes for synonymous mutations.  
c, Distribution of codon usage frequency changes for synonymous mutations.  

d, Distribution of conservation scores for synonymous mutations. e, Distribution 
of gene essentiality (Chronos score) for synonymous mutations in HCT116 cells.  
f, Distribution of expression levels for synonymous mutations in HCT116 cells.
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Extended Data Fig. 7 | Validation of synonymous mutations causing aberrant 
RNA splicing. a, Schematic depiction of the splicing alterations caused by the 
RPL11_V132 (GTG > GTC) mutation. The transcript sequence information was 
obtained by sequencing the cDNA from the experimental and control groups. 
b, Validation of the effect of the RPL11_V132 (GTG > GTC) mutation on cell 
proliferation in HCT116 cells. c, Relative mRNA expression levels of RPL11 in the 
experimental and control groups. The mRNA level of each sample was quantified 
by real-time qPCR and normalized by GAPDH, and the indicated relative mRNA  
level was normalized to that of AAVS1-targeting control cells. d, Analysis of 
editing outcomes for epegRNA targeting RPL11_V132 and controls via genome 
sequence amplification and NGS. e, Schematic depiction of the splicing 
alterations caused by the KRAS_G75 (GGG > GGT) mutation. The transcript 

sequence information was obtained by sequencing the cDNA from the 
experimental and control groups. f, Validation of the effect of the KRAS_G75 
(GGG > GGT) mutation on cell proliferation in HCT116 cells. g, Relative mRNA 
expression levels of KRAS in the experimental and control groups. The mRNA 
level of each sample was quantified by real-time qPCR and normalized by GAPDH, 
and the indicated relative mRNA level was normalized to that of AAVS1-targeting 
control cells. h, Analysis of editing outcomes for epegRNA targeting KRAS_G75 
and controls via genome sequence amplification and NGS. All data are presented 
as mean ± s.d. (n = 3 biological replicates for cell proliferation assay, n = 3 
technical replicates for real-time qPCR). P values were calculated using two-tailed 
Student’s t test, *P < 0.05, ****P < 0.0001; n.s., not significant.
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Extended Data Fig. 8 | Editing and the gene expression analysis at the PLK1_S2 
site. a, Analysis of editing outcomes for epegRNA targeting PLK1_S2 and controls 
via genome sequence amplification and NGS. b, Relative mRNA expression levels 
of PLK1 in the experimental and control groups. The mRNA level of each sample 

was quantified by real-time qPCR and normalized by GAPDH, and the indicated 
relative mRNA level was normalized to that of AAVS1-targeting control cells. Data 
are presented as mean ± s.d. (n = 3 technical replicates). P values were calculated 
using two-tailed Student’s t test, n.s., not significant.
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Extended Data Fig. 9 | Capture and data quality control for DIRECTED-seq.  
a, Overview of the process for capturing epegRNA and single-cell transcriptomes. 
The cDNA of epegRNA was obtained by reverse transcription using primers 
targeting the constant secondary structure of evopreQ1, and the cDNA of the 
entire transcriptome within the cells was obtained by reverse transcription using 
oligo-dT primers. The figure was adapted from ref. 63. b, Sequencing depth 
impact epegRNA detection probability and observed gene expression levels.  
The blue dashed line represents the linear regression line correlating total 

epegRNAs per cell (y) with total UMIs per cell (x). c–d, Quantile–quantile plots 
comparing 15 nontargeting epegRNAs (negative control) with 395 epegRNAs 
across 213 genes (discovery). Genes for the nontargeting tests were randomly 
selected from the entire gene set. The left-hand panel shows the QQ plot of raw  
P values, and the right-hand panel shows the QQ plot of –log10 transformed  
P values. In both panels, the black solid line denotes the theoretical y = x reference 
under the null hypothesis and the surrounding gray band represents the 
pointwise 95% confidence interval of that regression.
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Extended Data Fig. 10 | Comparison of the performance of different 
prediction models and the screening results in the A549 and KYSE-30 
cell lines. a–b, ROC analysis of DS Finder, SilVA, and CADD on 45 confirmed 
pathogenic mutations (positive controls) and 1,439 synonymous mutations 
without phenotypes from our screening (negative controls). The x-axis 
represents the false positive rate, and the y-axis represents the true positive 
rate. The red, dark blue, and green curves represent DS Finder, SilVA, and 
CADD, respectively. The test set in a contains 20 positive controls, excluding 
the mutations used in the SilVA training set and the test set in b consists of the 
25 mutations used in the SilVA training set. c–f, Screening results analysis of 
three cell lines. Volcano plot illustrating the results of screening for functional 

synonymous and nonsynonymous mutations affecting cell fitness in A549 (c) 
and KYSE-30 (e). Blue and red dots denote depleted and enriched epegRNAs, 
respectively. Analyzing the correlation between three eBARs using zLFC in 
A549 (d) and KYSE-30 (f), following the same method as in Fig. 1d. The data were 
filtered according to the log2 fold change of a specific eBAR and the Pearson 
correlation of the zLFC of another pair of eBARs was investigated. The y-axis 
represents the Pearson correlation of the zLFC, while the x-axis indicates the 
specific threshold that the absolute value of the LFC must surpass. Red, green, 
and blue denote three individual eBARs: AGCA, CACT, and GCAG, respectively. 
g, Performance of DS Finder in three cell lines compared with CADD and SilVA. 
Each point on the graph represents a different dataset, totaling 10.
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