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Gene editing and its applications in biomedicine
Guanglei Li1†, Xiangyang Li1†, Songkuan Zhuang2†, Liren Wang3†, Yifan Zhu3†,

Yangcan Chen4,5,6†, Wen Sun4,6†, Zeguang Wu7†, Zhuo Zhou7†, Jia Chen8*, Xingxu Huang1*,
Jin Wang2*, Dali Li3*, Wei Li4,5,6,9,10*, Haoyi Wang4,5,6* & Wensheng Wei7*

1School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
2Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,

Shenzhen Second People’s Hospital, Shenzhen 518035, China;
3Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of

Life Sciences, East China Normal University, Shanghai 200241, China;
4State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;

5University of Chinese Academy of Sciences, Beijing 100049, China;
6Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China;

7Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences,
Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences,

Peking University, Beijing 100871, China;
8Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;

9Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China;
10HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China

Received October 27, 2021; accepted December 6, 2021; published online February 18, 2022

The steady progress in genome editing, especially genome editing based on the use of clustered regularly interspaced short
palindromic repeats (CRISPR) and programmable nucleases to make precise modifications to genetic material, has provided
enormous opportunities to advance biomedical research and promote human health. The application of these technologies in
basic biomedical research has yielded significant advances in identifying and studying key molecular targets relevant to
human diseases and their treatment. The clinical translation of genome editing techniques offers unprecedented biomedical
engineering capabilities in the diagnosis, prevention, and treatment of disease or disability. Here, we provide a general
summary of emerging biomedical applications of genome editing, including open challenges. We also summarize the tools of
genome editing and the insights derived from their applications, hoping to accelerate new discoveries and therapies in
biomedicine.
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Introduction

The purpose of gene-editing technology is to precisely
change DNA sequences at target sites. By fusing zinc finger
(ZF) proteins or transcription activator-like effector proteins
with the cleavage domain of FokI endonuclease, zinc finger
nucleases (ZFNs) (Beerli and Barbas, 2002) or transcription
activator-like effector nucleases (TALENs) (Boch and Bo-
nas, 2010) were developed, respectively, which started the
era of programmable gene editing. More recently, under the
direction of a guide RNA (gRNA), clustered regularly in-
terspaced short palindromic repeats (CRISPR)/CRISPR-as-
sociated protein (Cas) nuclease can cleave the DNA double-
strand at target sites with great convenience, efficiency, and
precision (Chang et al., 2013; Cong et al., 2013; Jinek et al.,
2012; Jinek et al., 2013; Mali et al., 2013).
Double-stranded breaks (DSBs) in genomic DNA are re-

paired by two endogenous pathways: nonhomologous end
joining (NHEJ) and homology-directed repair (HDR) (Cec-

caldi et al., 2016). NHEJ introduces random insertions or
deletions (indels) of nucleotides, which often lead to open
reading frame shift mutations (Deriano and Roth, 2013) and
ultimately disrupt the expression of the target gene (so-called
“knockout”). Alternatively, precise sequence replacement or
insertion (so-called “knockin”) can be achieved via HDR
when donor DNA is present (Jasin and Rothstein, 2013).
However, HDR efficiency is normally low in many types of
cells, limiting the breadth of its applications in biomedical
research and gene therapy. Recently, by fusing nuclease ac-
tivity-impaired Cas proteins with different effector modules,
including nucleobase deaminase and reverse transcriptase,
base editors (BEs) (Gaudelli et al., 2017; Komor et al., 2016)
and prime editors (PEs) (Anzalone et al., 2019) have been
developed to achieve precise editing with high efficiency and
product purity.
This section reviews the development and improvement of

various gene-editing technologies, including ZFN, TALEN,
CRISPR/Cas, BE, PE, and RNA editing (Table 1).

Table 1 Representative editors

Genome editor Targeting ability Knock out Knock in Base substitution Off-target
effects Reference

ZFN + +++ + + +++ (Bibikova et al., 2002; Kim et
al., 1996)

TALEN ++ +++ + + +++ (Cermak et al., 2011; Christian
et al., 2010; Miller et al., 2011)

Cas9 +++ (NGG PAM) +++ + + +++ (Cong et al., 2013; Jinek et al.,
2013; Mali et al., 2013)

Cas12a +++ (NGG PAM) +++ + + ++ (Zetsche et al., 2015)

nCas9 ++ (sgRNA pair,
NGG PAM) ++ + + ++ (Ran et al., 2013;

Shen et al., 2014)

dCas9-FokI ++ (sgRNA pair,
NGG PAM) ++ + + + (Guilinger et al., 2014;

Tsai et al., 2014)

BE3 ++ (NGG PAM) +++ (Creating stop
codon) − +++ (C-to-T/G-to-A) +++ (Komor et al., 2016)

hA3A-BE3 ++ (NGG PAM) +++ (Creating stop
codon) − +++ (C-to-T/G-to-A) +++ (Wang et al., 2018e)

dCas12a-BE ++ (TTTV PAM) +++ (Creating stop
codon) − +++ (C-to-T/G-to-A) ++ (Li et al., 2018d)

BEACON ++ (TTTV PAM) +++ (Creating stop
codon) − +++ (C-to-T/G-to-A) + (Wang et al., 2020f)

tBE ++ (NGG or NG
PAM)

+++ (Creating stop
codon) − +++ (C-to-T/G-to-A) − (Wang et al., 2021)

ABE7.10 ++ (NGG PAM) +++ (Mutating splicing
site) − +++ (A-to-G/T-to-C) +++ (Gaudelli et al., 2017)

LbABE8e ++ (TTTV PAM) +++ (Mutating splicing
site) − +++ (A-to-G/T-to-C) ++ (Richter et al., 2020)

PE3 ++ (NGG PAM) +++ (Creating stop
codon) ++ (Small insertion) ++ +/− (Anzalone et al., 2019)

Cas13 +++ (RNA, no PFSa)
constraint) ++ (Knock down) − − ++ (Abudayyeh et al., 2017)

REPAIR ++ (RNA, no PFS
constraint)

+ (Knock down,
mutating start codon) − ++ (A-to-G/T-to-C) ++ (Cox et al., 2017)

RESCUE ++ (RNA, no PFS
constraint)

++ (Knock down,
creating stop codon) − ++ (C-to-T/G-to-A) ++ (Abudayyeh et al., 2019)

a) PFS: protospacer flanking site.

661Li, G., et al. Sci China Life Sci April (2022) Vol.65 No.4



ZFN

Site-specific nucleases have long been applied in DNA re-
combination in vitro, and therefore, these nucleases were
first used for gene editing. Meganucleases, a type of en-
donuclease that recognizes long DNA sequences (e.g.,
~12–40 bp), have been applied and engineered to generate
DSBs at genomic loci. However, meganucleases have not
been used widely in genome editing due to their limited
recognition sites and the difficulty of designing their tar-
geting specificity. However, DNA endonucleases can be
used as effector modules to generate DNA breaks. The FokI
endonuclease in particular has separate domains responsible
for DNA binding and cleavage. A single DNA cleavage
domain of FokI is inactive, but the dimerization of two
cleavage domains gains DNA cleavage activity and cuts
DNA double strands with no sequence specificity. Thus, a
pair of fusion proteins, each containing a FokI DNA cleavage
domain and a locator module, can be used for targeted gene
editing.
Zinc finger motifs, originally discovered in transcription

factors in Xenopus laevis (Klug, 2010; Miller et al., 1985),
were used as the first locators for DNA targeting in gene
editing. One ZF motif binds to three base pairs (bp) and an
array of ZF motifs that recognize ~9–18 bp of specific DNA
sequences (Bibikova et al., 2002). This modular configura-
tion makes ZF a potential platform for programmable gen-
ome targeting. By fusing an array of ZF motifs with the FokI
cleavage domain, ZFNs were developed for programmable
gene editing (Kim et al., 1996). Generally, a pair of ZFNs
that target the upstream and downstream regions of an in-
tended genomic locus can be used to induce the dimerization
of FokI cleavage domains, which then cleave DNA double
strands. The repair of DSBs by NHEJ or HDR can eventually
lead to random indels or precise sequence replacement for
gene knockout or knockin, respectively.
Although some customized ZF arrays can efficiently bind

to targeted genomic loci, the construction of ZF arrays for
most genomic sites remains challenging, as the crosstalk
between adjacent ZF motifs can interfere with the binding of
a ZF array to the intended DNA region. Thus, the generation
of a pair of functional ZFNs requires the screening of nu-
merous ZF arrays. As a potential gene therapy tool, ZFNs
have relatively small sizes and can be packaged into adeno-
associated virus (AAV) (Yin et al., 2017a), a convenient and
prevalent vector for in vivo gene editing.
Off-target (OT) editing, changes in the DNA sequence at

unintended genomic sites, is one of the major concerns about
genome editing technology, especially for its applications in
gene therapy. The OT effects of ZFNs have been system-
atically examined in vitro, and obvious cleavage can be in-
duced by ZFN at hundreds of OT sites (Pattanayak et al.,
2011). Some of the in vitro identified OT sites can be edited

by ZFNs in human cells, confirming the OT effects of ZFNs
in vivo.

TALEN

Discovered in the bacterial plant pathogen Xanthomonas,
transcription activator-like effector (TALE) proteins contain
DNA binding domains that are repeats of amino acid re-
sidues (Boch and Bonas, 2010). The DNA binding domain of
TALE has tandem 33–34 amino acid repeats with divergent
dual residues at positions 12 and 13. These two positions (the
so-called repeat variable diresidue, RVD) are highly variable
and determine the DNA binding specificity of a TALE pro-
tein (Boch et al., 2009; Moscou and Bogdanove, 2009). As a
TALE motif containing a specific RVD can recognize a
specific nucleotide, a combination of repeat TALE motifs
containing the appropriate RVDs can bind to a specific DNA
sequence. In contrast to ZF arrays, TALE arrays can re-
cognize and bind to target sites without interfering with each
TALE domain in the array.
Similar to ZFN, by taking advantage of a pair of fusion

proteins of the FokI cleavage domain and TALE array, TA-
LENs were developed to induce DSBs at targeted genomic
sites (Cermak et al., 2011; Miller et al., 2011). Although a
pair of functional TALENs can be generated without tedious
screening of TALE arrays, the construction of TALEN-ex-
pressing vectors is still complicated due to homologous re-
combination between repetitive TALE sequences. In
addition, the complex design and construction of TALEN-
expressing vectors are time-consuming and costly, which
also hampers some of their potential applications, such as
high-throughput assays. Although a study showed that the
incidence of OT editing of TALEN in human stem cells was
low (Veres et al., 2014), the systematic analysis of OT effects
by TALEN awaits further investigation.

CRISPR-Cas

CRISPR/Cas was originally identified as a defense system in
bacteria to provide acquired immunity against bacterial
parasites, such as bacteriophages and plasmids (Barrangou et
al., 2007; Bolotin et al., 2005; Mojica et al., 2005; Pourcel et
al., 2005). Major types of CRISPR/Cas used for gene editing
belong to the class 2 system (Makarova et al., 2020), which
requires only one DNA endonuclease, e.g., Cas9 (Cong et al.,
2013; Jinek et al., 2012; Mali et al., 2013) or Cas12a (also
known as Cpf1) (Zetsche et al., 2015), to cleave double
strands of bacteriophage or plasmid DNA under the guidance
of CRISPR RNA (crRNA). In the CRISPR/Cas9 system, a
crRNA and a trans-activating crRNA (tracrRNA) form a
double-stranded RNA, which can be processed by RNase III,
and then the mature crRNA/tracrRNA complex recruits Cas9
protein to form a ribonucleoprotein (RNP) complex

662 Li, G., et al. Sci China Life Sci April (2022) Vol.65 No.4



(Gasiunas et al., 2012; Jinek et al., 2012). Single-guide RNA
(sgRNA) was engineered by fusing crRNA to scaffold
tracrRNA to recruit Cas9 to facilitate gene editing in various
species (Jinek et al., 2012). In the CRISPR/Cas12a system,
only crRNA is needed to recruit the Cas12a protein to form
an RNP complex (Zetsche et al., 2015). Directed by an
sgRNA or a crRNA, the Cas9 or Cas12a RNP complex binds
to the target site, which is complementary to the spacer re-
gion of the corresponding sgRNA or crRNA and has a pro-
tospacer-adjacent motif (PAM) (Anders et al., 2014;
Nishimasu et al., 2014; Sternberg et al., 2014; Zetsche et al.,
2015). Generally, different Cas proteins recognize different
PAM sequences. For instance, the commonly used Strepto-
coccus pyogenes Cas9 (SpCas9) recognizes an NGG PAM
sequence at the 3′ end of the protospacer region (Jinek et al.,
2012; Ran et al., 2015), while Acidaminococcus Cas12a
(AsCas12a) and Lachnospiraceae bacterium Cas12a
(LbCas12a) recognize a TTTV PAM sequence at the 5′ end
of the protospacer region (Zetsche et al., 2015). After bind-
ing at a target site, the HNH and RuvC-like endonuclease
domains of Cas9 cleave target (complementary) and non-
target (noncomplementary) DNA strands, respectively (Jinek
et al., 2012). The cleavage results in two blunt DNA ends,
and the cleavage site is 3 bp upstream of the PAM sequence
(Jinek et al., 2012). In contrast, Cas12a proteins have only a
RuvC-like endonuclease domain, and they generate sticky
DNA ends distal to the PAM sequence (Zetsche et al., 2015).
The discovery of new Cas proteins and the engineering of
discovered Cas proteins continuously expand the DNA tar-
geting range of CRISPR/Cas systems (Hu et al., 2018;
Kleinstiver et al., 2015; Miller et al., 2020; Nishimasu et al.,
2018).
Genome-wide analyses have shown that Cas9 en-

donuclease can bind and cleave DNA double strands at OT
sites with sequence similarity to the on-target sites (Kim et
al., 2015; Tsai et al., 2015; Tsai et al., 2017). Generally,
mismatches between the sgRNA spacer region and OT site
can be better tolerated at the PAM-distal region than at the
PAM-proximal region. Although the use of sgRNA with
fewer potential OT sites in genomic DNA can reduce the OT
effects of Cas9, the development of an improved CRISPR/
Cas9 system with high editing specificity substantially re-
duced its OT effects. As Cas9 proteins contain two en-
donuclease domains, one endonuclease domain can be
mutated, which results in a nickase version of Cas9 (nCas9).
nCas9 can be used for gene knockout when it is co-expressed
with a pair of sgRNAs targeting the opposite DNA strands of
an on-target site (Ran et al., 2013). In this situation, nCas9
generates two nicks at opposite DNA strands, which mimics
a DSB. In contrast, nCas9 generates only a DNA single-
strand break (SSB) at a particular OT site as two sgRNAs
have distinct OT sites, and thus the OT indels triggered by
DSBs are largely avoided. However, SSBs can still induce

some levels of indels at certain OT sites, as an SSB can be
converted to a DSB through endogenous DNA repair pro-
cesses involving endogenously expressed cytidine deami-
nases (Lei et al., 2018). The FokI cleavage domain was fused
to catalytically dead Cas9 (dCas9) to decrease OT editing
further. The fusion protein can induce DSBs at on-target sites
where a pair of sgRNAs induce the dimerization and acti-
vation of FokI nuclease; however, no DNA break is gener-
ated at OT sites where the FokI cleavage domain remains
inactive as a monomer (Fu et al., 2014; Guilinger et al.,
2014).
Another strategy for improving editing specificity is to

engineer Cas9 proteins. The residues of Cas9 that are in-
volved in the interaction with the DNA backbone were
mutated to reduce the binding of Cas9 at OT sites, while the
binding and editing ability at on-target sites was largely re-
tained (Chen et al., 2017a; Kleinstiver et al., 2016a; Lee et
al., 2018; Slaymaker et al., 2016). In addition, sgRNAs for
Cas9 have been modified to reduce OT effects, for instance,
changing the length of the spacer region (Fu et al., 2014; Kim
et al., 2015) or adding an RNA secondary structure onto the
5′ end of an sgRNA (Kocak et al., 2019). The method of
delivery also affects the specificity of CRISPR/Cas9-medi-
ated gene editing. Generally, the delivery of RNP complexes
or RNAs provides higher editing specificity than DNA de-
livery, as the continuous expression of sgRNA and Cas9
from plasmid DNA can increase editing at OT sites (Kim et
al., 2014; Ramakrishna et al., 2014; Rees et al., 2017; Yin et
al., 2017b).
As ZFN, TALEN, and CRISPR/Cas all generate DSBs to

initiate genome editing, the DNA damage response (DDR)
triggered by DSBs has been observed in an increasing
number of studies (Haapaniemi et al., 2018; Ihry et al.,
2018). As a toxic DNA lesion, DSBs can trigger the phos-
phorylation and activation of a key DDR, ataxia-tel-
angiectasia mutated (ATM) (Shiloh and Ziv, 2013).
Furthermore, the end resection in the DSB repair process can
generate single-stranded DNA regions, triggering the phos-
phorylation and activation of additional key DDR effectors,
ATM and RAD3-related (ATR) protein kinase (Cimprich and
Cortez, 2008). Both activated ATM and ATR can subse-
quently phosphorylate p53, resulting in cell cycle arrest or
even cell death (Khanna et al., 1998; Tibbetts et al., 1999).
Thus, preventing DDR would be a future direction to further
improve gene-editing technology.

Base editor

The apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like (APOBEC), and the activation-induced
deaminase (AID) families of cytidine deaminases comprise
various members in many species (Harris and Liddament,
2004; Salter et al., 2016; Yang et al., 2017). The APOBEC
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family members can catalyze the deamination of cytidine to
uracil in single-stranded nucleic acids, including RNA and
single-stranded DNA (ssDNA). By fusing APOBECs with
dCas9 or dCas12a proteins, cytosine base editors (CBEs)
have been developed to induce C-to-U deamination in the
ssDNA region of the R-loop generated by Cas9 or Cas12a
(Hess et al., 2016; Komor et al., 2016; Li et al., 2018d; Ma
et al., 2016; Nishida et al., 2016). To enhance editing effi-
ciency, Komor et al. (2016) replaced dCas9 in CBE by
nCas9 (D10A), which nicks the target strand and then
triggers the endogenous mismatch repair (MMR) pathway
(Kunkel and Erie, 2015). MMR resolves the CBE-induced
U/G mismatch to a U/A pair by removing the unedited G-
containing strand and then resynthesizes it complementary
to the U-containing strand. Finally, the U/A base pair can be
converted to a T/A base pair after DNA replication or re-
pair. Although CBEs do not induce DSBs directly, the
formation of indels was still found to be triggered by CBE
because of the breakage of the abasic site that is formed
after the excision of U by uracil DNA glycosylase (UDG)
(Lei et al., 2018). Uracil DNA glycosylase inhibitor (UGI)
was fused into or co-expressed with CBE to improve purity
of the editing product and editing efficiency (Komor et al.,
2017; Wang et al., 2017c).
As APOBEC family members can deaminate multiple

cytidines in an ssDNA region, all the cytosines in the editing
window (a few nucleotides in the spacer region) of CBEs can
be edited, which hinders the application of CBEs when
single-base editing is required. Thus, various mutations were
introduced into the domains involved in the catalytic activity
or substrate binding ability of APOBECs to reduce the cy-
tidine deamination activities of CBEs and narrow their
editing windows (Kim et al., 2017). In addition, DNA
modification or dinucleotide sequence context, e.g., cytosine
methylation or GpC context, also affects the editing effi-
ciencies of CBEs. Hence, naturally occurring APOBECs or
in vitro evolved APOBECs, including human APOBEC3A
(hA3A) (Wang et al., 2018e) or evoAPOBEC1 (Thuronyi et
al., 2019), have been used in CBEs to expand the editing
scope.
Alternatively, Escherichia coli tRNA-specific adenosine

deaminase (TadA), which catalyzes adenosine to inosine (I)
deamination in tRNA, has been engineered to induce ade-
nosine deamination in ssDNA (Gaudelli et al., 2017). De-
spite the originally low activity, TadA*, which was obtained
after seven rounds of directed evolution in vitro, can suc-
cessfully deaminate adenine in DNA. To further improve the
DNA binding activity of TadA*, wild-type TadA was fused
at the N-terminus of TadA*; therefore, adenine base editors
(ABEs) were developed by fusing nCas9 (D10A) with the
TadA-TadA* heterodimer (Gaudelli et al., 2017). As inosines
do not exist naturally in DNA, no known DNA glycosylase
can efficiently remove inosines from deoxyribose. Thus, no

DNA glycosylase inhibitor is required to be fused into ABEs,
and no significant indel formation is triggered by ABEs.
Similar to CBEs, subsequent MMR or DNA replication re-
solves the I/T mismatch to the I/C pair and eventually installs
a G/C pair at the target site.
Recently, base editors were found to cause OT effects in-

dependent of sgRNA or Cas9. CBEs that contain APOBEC
cytidine deaminases could induce genome-wide C-to-T/G-
to-A mutations at OT sites with no sequence similarity to on-
target sites, suggesting that the OT events are independent of
the Cas9/sgRNA targeting module (Jin et al., 2019; Zuo et
al., 2019). As APOBEC cytidine deaminases prefer ssDNA
regions as deamination substrates, the APOBEC module of
CBE can bind and trigger C-to-U deamination in ssDNA
regions generated during various cellular processes, e.g.,
transcription, DNA replication, and repair (Chen et al.,
2019b). Recently, by reducing the substrate-binding/catalytic
activity of APOBEC or taking advantage of cytidine dea-
minase inhibitor domains, sgRNA-independent OT DNA
editing was reduced or eliminated (Doman et al., 2020; Jin et
al., 2020; Wang et al., 2021; Zuo et al., 2020).
Moreover, APOBEC1, the cytidine deaminase commonly

used in base editors, was originally discovered to induce C-
to-U editing in apolipoprotein B mRNA, and TadA, which
evolved to perform A-to-G DNA editing, is an essential
tRNA-specific adenosine deaminase in E. coli. Unexpectedly
but not surprisingly, both CBEs and ABEs, which contain
APOBEC cytidine deaminases and TadA* adenosine dea-
minases, respectively, induced transcriptome-wide C-to-U
and A-to-I OT mutations (Grünewald et al., 2019a; Zhou et
al., 2019a). By engineering the residues of APOBEC or
TadA* involved in RNA binding, OT RNA editing was
greatly reduced, and on-target DNA editing was maintained
(Grünewald et al., 2019b; Zhou et al., 2019a). A recent re-
view also summarized the progress to improve the editing
efficiency and precision of CBEs and ABEs (Jeong et al.,
2020).

Prime editor

Although CBEs and ABEs can efficiently induce C-to-U (G-
to-A) and A-to-G (T-to-C) transitions, targeted transversions
and precise small indels are still hard to generate, as the
efficiency of HDR is generally low in most cells and tissues.
A versatile gene-editing tool, prime editor (PE), has recently
been developed to induce all twelve types of base substitu-
tions, small indels, and their combinations with high effi-
ciency and product purity (Anzalone et al., 2019; Yang et al.,
2019). By conjugating nCas9 (H840A) with reverse tran-
scriptase (RTase), the developed PE can initiate reverse
transcription (RT) from the single-strand break generated in
the nontarget strand under the direction of an engineered
prime editing guide RNA (pegRNA). A pegRNA contains
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three parts: a typical sgRNA containing a canonical spacer
region for Cas9 recruitment and target-site binding, a primer
binding site (PBS) to initiate RT, and an RT template to
encode intended edits. Although the original PE induced
only low levels of editing in mammalian cells, the editing
efficiency was much improved by engineering Moloney
murine leukemia virus (M-MLV) RTase to increase the
binding ability at the RT initiation site, the thermostability,
and the enzyme processivity. To further improve PE effi-
ciency, a canonical sgRNA (nicking sgRNA) was also used
to make a nick in the target strand, triggering downstream
MMR to remove the unedited strand and maintain the edited
strand. Moreover, by using a pair of pegRNAs that contain
the same editing information but bind to opposite DNA
strands, the efficiency of PE can be improved (Lin et al.,
2021).
As the effector module of PE is an RTase from murine

retrovirus, a recent study examined whether PE induces
genome-wide mutations in plants. At gRNA-dependent OT
sites, which have sequence similarity to on-target sites, PE
induced minimal OT mutations (Kim et al., 2020). In addi-
tion, in contrast to BE, PE induced no observable gRNA-
independent OT mutations throughout the genome of plant
cells, demonstrating its high editing specificity (Jin et al.,
2021).

RNA editing

In addition to targeting DNA, some class 2 CRISPR/Cas
systems can also target RNA. Under the guidance of a single
crRNA, Cas13 family members can bind to RNA with a
corresponding target sequence, providing a platform for tar-
geted RNA editing (Abudayyeh et al., 2016; Abudayyeh et al.,
2017; Konermann et al., 2018; Xu et al., 2021a). Unlike DNA
editing, RNA editing does not permanently change genetic
information, thus having complementary strengths, e.g., ap-
plications in disease treatment without the risk of irreversible
side effects. RNA-targeting Cas13 proteins have been fused
with wild-type adenosine deaminase acting on RNA (ADAR)
to induce A-to-I base editing in RNA (Cox et al., 2017). Al-
ternatively, ADAR has evolved to deaminate cytidine in RNA
and can be used to perform targeted C-to-U RNA base editing
(Abudayyeh et al., 2019). Although RNA editing demon-
strated considerable efficiency, its OT effects await systematic
analysis. Surprisingly, native ADAR can also be recruited by
engineered RNAs to perform A-to-I editing at target RNA in
the absence of Cas13 protein (Merkle et al., 2019; Qu et al.,
2019), which showed low OT effects.

High-throughput functional genomics

Cutting-edge genome editing technologies enable genomic

alterations both individually and in a high-throughput fash-
ion. CRISPR-Cas9 genomic screens drive the latest exciting
biological findings, significantly advance the scope and ac-
curacy of functional genomics and have outperformed RNA
interference (RNAi) platform, owing to their robustness and
scalability (Shalem et al., 2015).

CRISPR screen pipelines and strategies

Upon Cas9-sgRNA ribonucleoprotein targeting, the RuvC
and HNH nuclease domains of Cas9 induce DSBs (Jinek et
al., 2012). In response to nuclease-induced DSBs, random
indels at the site of DNA cleavage are introduced by the
cellular DNA repair system. These indels are vital to gen-
erating knockout phenotypes of coding genes.
Selecting active sgRNAs that mediate high CRISPR/Cas9

activity is critical to implement CRISPR genetic screens. The
genome-wide selection of sgRNAs can be optimized in a
systematic approach; for example, an effective library was
created for gene repression and activation screens by ap-
plying an algorithm that incorporates chromatin, position,
and sequence features (Horlbeck et al., 2016). Multiple
sgRNAs targeting the same gene are generally recommended
to increase the probability of editing and the robustness of
deconvolution. The negative control and nontargeting
sgRNAs are critical for quality control of screening and data
interpretation. The cell coverage of sgRNAs is another im-
portant parameter for library performance.
A robust readout is decisive for a successful screen. The

readout can be generalized into two categories (Figure 1).
Cells are subjected to universal conditions, as cell growth or
death occurs during selection, and the resultant cells can be
collected as a whole population. Otherwise, populations of
interest have to be enriched by various methods, including
biological assays evaluating cell migration, cell attachment,
and cellular fluorescence intensity.
Typical examples include screens to identify coding genes

conferring resistance to a drug, toxin, pathogen, or immune
cells (Guo et al., 2022; Liang et al., 2021; Peng et al., 2015;
Ren et al., 2015; Shalem et al., 2014; Zhao et al., 2019; Zhou
et al., 2014; Zhu et al., 2021). In a positive screen, the ma-
jority of cells are depleted under strong selection conditions,
and only a few cells with a protective phenotype expand. In a
negative screen, cell growth in a fixed condition and time
period can be applied to identify genes whose perturbations
lead to cell death or growth inhibition (Shalem et al., 2014;
Wang et al., 2014). Fluorescence-activated cell sorting
(FACS) is another frequently used assay to enrich or deplete
populations of interest in a flexible manner. For example, the
surface expression density of a given molecule can be used to
enrich cells through FACS. Coding genes regulating immune
molecule expression, such as Foxp3, Fas, PDL1, and HLA,
have been investigated (Burr et al., 2017; Cortez et al., 2020;
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Dersh et al., 2021; Jiang et al., 2019).
Proficient molecular engineers have created Cas9 variants

with different nuclease activities, PAM compatibilities,
editing windows, and small-molecule or light dependences
(Anzalone et al., 2020). Catalytically inactive Cas9 protein
(dead Cas9, dCas9) binds a targeted DNA sequence but does
not cleave the DNA strands (Pickar-Oliver and Gersbach,
2019). This feature was leveraged to generate Cas9 deriva-
tives by coupling dCas9 with various effectors, such as
transcriptional modulators (Gilbert et al., 2013; Qi et al.,
2013) or epigenome-modifying factors (Liu et al., 2016).
dCas9 transcriptional modulators have been successfully
applied to achieve the transcriptional activation (CRISPRa)
and repression (CRISPRi) of a gene. They were first estab-
lished by fusing the transcription activator Vps64 or the
Krüppel-associated box (KRAB) repressor to dCas9 (Gilbert
et al., 2013). Endeavors have been made to improve the
efficacy of these effectors, e.g., CRISPRa effectors were
further improved by fusing a repeating peptide array of
epitopes to recruit Vps64 (Tanenbaum et al., 2014) or using a
synthetic sgRNA scaffold with an MS2 RNA motif loop to
recruit additional activators (Joung et al., 2017). These Cas9
derivatives leading to gene transcriptional activation or re-
pression have been employed in functional screens, and the
latter type is particularly useful when gene transcriptional
perturbation, rather than gene knockout, is preferred. These
screens have identified coding genes that modify cell growth
and confer cancer therapeutic resistance (Joung et al., 2017;
Liu et al., 2016). dCas9-engineered epigenetic effectors have
been summarized elsewhere (Nakamura et al., 2021). No-

tably, dCas9-coupled gene-regulatory effectors and epige-
netic effectors have considerable overlap of gene regulation
mechanisms. For instance, transcriptional modulators could
shape epigenetic states, and vice versa. Recently, an effector
(CRISPRoff) was generated by fusing the transcriptional
modulator ZNF10-KRAB and epigenetic effector domains to
dCas9 (Nuñez et al., 2021). This effector could silence the
specific gene that is stably maintained across cell division
and differentiation. All these approaches have demonstrated
efficacy in diverse high-throughput genomic screens.

Interrogating noncoding genes

The CRISPR/Cas9 system offers a general platform for
RNA-guided DNA targeting, including coding and noncod-
ing genes. The CRISPR screening approach could be readily
extended to systematically discover the functions of nu-
merous noncoding transcripts. MicroRNAs (miRNAs) are
small, noncoding RNA molecules that regulate gene ex-
pression posttranscriptionally. Small nucleolar RNAs
(snoRNAs) constitute a group of intron-encoded noncoding
RNAs. CRISPR/Cas9 knockout screens have revealed that
multiple miRNAs and snoRNAs regulate cancer cell growth
(Cui et al., 2021; Kurata and Lin, 2018; Wallace et al., 2016).
Long noncoding RNAs (lncRNAs) are particularly inter-

esting because of their large numbers and expanding roles in
a wide array of cellular processes. Although CRISPR/Cas9 is
ideal for inducing frameshift mutations in exons of coding
genes to achieve gene knockout, frameshifts are usually not
sufficient to disrupt the structure and function of lncRNAs.

Figure 1 Readouts of CRISPR/Cas9 pooled screens. The readouts can be generalized into two groups. Cells can be collected as a whole for DNA library
preparation, or subsets can be further enriched by various methods.
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To tackle this, studies have applied large-fragment deletions
and splice-site disruption strategies mediated by paired
sgRNAs and a single sgRNA, respectively, to disrupt the
expression of lncRNAs (Horlbeck et al., 2020; Liu et al.,
2018a; Liu et al., 2020; Zhu et al., 2016). These studies have
revealed a number of lncRNAs that affect human cancer cell
fitness in a cell type-dependent manner. Transcriptional and
epigenetic effectors can perturb the expression levels of
genes, which is particularly helpful to study the function of
lncRNAs. The first CRISPRi screen applied dCas9-KRAB
targeting to 16,401 lncRNA loci to evaluate cellular growth
in 7 diverse cell lines (Liu et al., 2017a). The same strategy
has identified PRANCR as a novel regulator of epidermal
homeostasis (Cai et al., 2020). Another study developed a
genome-scale CRISPRa screen targeting more than 10,000
lncRNA transcriptional start sites to identify noncoding loci
that confer cancer therapeutic resistance (Joung et al., 2017).
Circular RNA (circRNA) is another class of noncoding

RNA that features a covalent bond linking the 3′ and 5′ ends
generated by backsplicing (Ebbesen et al., 2016). Increasing
evidence suggests its role in the regulatory network gov-
erning gene expression. Given the identical sequence of
circRNAs and their parental mRNA, targeting circRNA-
forming exons or the intronic cis-elements required for cir-
cRNA biogenesis may affect parental gene expression. To
specifically perturb the expression of circRNA, a recent
study utilized CRISPR-RfxCas13d and gRNAs targeting the
RNA sequences spanning back-splicing junction (BSJ) sites.
Taking advantage of the low biogenesis efficiencies and
turnover rates of circRNAs, this method interferes with cir-
cRNA expression more efficiently than linear mRNA and
consequently identifies multiple circRNAs contributing to
cell proliferation in a cell type-dependent manner (Li et al.,
2021c).

Mapping regulatory elements

Proximal and distal enhancers are vital genomic elements
dictating gene expression and cell programming. Various
biochemical markers and chromatin features are widely used
to predict regulatory elements, and reporter assays are ap-
plied to assess their effects on gene expression. The
CRISPR/Cas9 system now enables researchers to function-
ally map these elements in a native genomic context through
mutation or through transcriptional and epigenetic modula-
tion.
A study was conducted to target predicted enhancer sites of

p53 and ERα with CRISPR-Cas in a high-throughput fashion
(Korkmaz et al., 2016) and revealed multiple novel func-
tional enhancers. The same strategy was applied to identify
CTCF-binding elements (CBEs) that are essential for ERα-
driven cell proliferation (Korkmaz et al., 2019).
To finely map functional sites in specific enhancers, one

study applied tiling libraries to generate saturation muta-
genesis in situ at 3 DNase I hypersensitive sites (DHSs) of a
BCL11A composite enhancer (Canver et al., 2015). Given
that BCL11A abundance is inversely correlated with HbF
protein expression, by the association of HbF levels and
enriched sgRNAs, the study provided a nucleotide resolution
map of BCL11A enhancers. The same approach has been
applied to map functional sites in regulatory elements of
CDKN1A (Korkmaz et al., 2016), NF1, NF2, CUL3,
POU5F1 (Diao et al., 2016), Tdgf1, and Zfp42 (Rajagopal et
al., 2016). The above studies applied fluorescence tags,
surface protein staining, or assay-specific selection reagents
to enrich cells of interest. An alternative approach to perform
a tiling mutation screen is to apply paired deletion guides in
close proximity to genomic loci of interest, including
POU5F1 and HPRT1 (Diao et al., 2017; Gasperini et al.,
2017).
Base editing strategies apply additional effectors, such as

activation-induced cytidine deaminase (AID) (Nishida et al.,
2016), APOBEC cytidine deaminases, and TadA adenine
deaminase, in combination with the CRISPR-Cas9 gene-
editing system to introduce point mutations at the targeted
site (Gaudelli et al., 2017; Komor et al., 2016). A recent
study applied an APOBECB-mediated base editor screen to
map regulatory elements of four loci involved in HbF ex-
pression. A total of 6,174 sgRNAs targeting 307 putative
regulatory elements were investigated by correlating en-
riched sgRNAs to HbF expression abundance, revealing
novel therapeutic candidates for sickle cell disease treatment
(Cheng et al., 2021).
dCas9 coupled with transcriptional and epigenetic effec-

tors has also been applied to investigate distal regulatory
elements. A study applied dCas9-KRAB repressor to assess
~1.3 Mb of genomic sequence surrounding two loci, GATA1
and MYC (Fulco et al., 2016). Multiple distal enhancers
contributing to their expression were identified. Another
study applied a dCas9-VP64 activator with a tiled library of
gRNA targeting sites in the vicinity of CD69 and IL2RA to
identify stimulation-responsive enhancers in T cells (Si-
meonov et al., 2017). Moreover, a study applied dCas9-
KRAB (CRISPRa) and dCas-9p300 (CRISPRi) as effectors
to investigate the enhancers of β-globin and HER2 (Klann et
al., 2017). The above studies demonstrated that CRISPR/
Cas9-based transcriptional and epigenetic screens are suc-
cessful in identifying genomic regulatory elements.

Probing functional residues

Tiling libraries generating saturation mutagenesis in situ can
also be applied to study functional residues of coding genes.
Parsing fragmented DNA Sequences from CRISPR Tiling
MUtagenesis Screening (PASTMUS) is a method pairing
tiling mutagenesis and NGS to identify functionally critical
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amino acids (Zhang et al., 2019c). Similar tiling mutagenesis
using a cytosine base editor to identify functional residues of
the protein of interest has also been reported. This method,
called CRISPR-X, identified novel mutations that modulate
protein expression and confer drug resistance (Hess et al.,
2016). Recently, CBE has been applied to probe functional
single-nucleotide variants in DDR genes, drug resistance,
and cell growth under cellular stresses (Cuella-Martin et al.,
2021; Hanna et al., 2021). These studies have demonstrated
that base editors are effective in generating single nucleotide
polymorphisms (SNPs) at endogenous loci in a high-
throughput fashion, suitable for both positive and negative
screens.

Exploring genetic interactions

Given that most human diseases are caused by the combined
action of more than one gene, high-throughput screens to
illuminate gene interactions are in high demand. With im-
proved dual-gene knockout gRNA vectors (Wong et al.,
2016), CRISPR/Cas9-based screens might have been per-
formed in synthetic-lethal studies (Han et al., 2017; Shen et
al., 2017). It is still technically challenging to perform un-
biased gene-interaction screens simply because of the im-
mense number of pairwise combinations. To date,
researchers have mainly focused on druggable and/or tumor
inhibitory genes to identify synthetic lethal target pairs (Han
et al., 2017; Shen et al., 2017).
Orthogonal CRISPR-Cas9 nucleases from S. aureus and S.

pyogenes have been paired for synthetic lethal screening
(Najm et al., 2018), which effectively reduced interference
between delivered sgRNAs. Moreover, this combination can
be further engineered to carry out a dual screen in which one
gene is activated while another is inactivated in the same cell
(Boettcher et al., 2018; Zhou and Wei, 2018).

Making better screens

In the majority of pooled screens, sgRNAs are integrated into
the cellular genome for the purpose of decoding by NGS.
Thus, libraries are normally introduced by retro- or lentiviral
infection at low multiplicity of infection (MOI), usually
<0.3, to ensure that most cells contain a single integrated
sgRNA and thereby minimize the false-positive discovery
rate (Shalem et al., 2014; Zhao et al., 2019; Zhou et al.,
2014). For genome-wide screens at low MOI infections, a
significantly large number of initial cells are required for
library construction. A recent study established a strategy
that enables infecting cells at a high MOI (Zhu et al., 2019).
This assumes that both the false-positive and false-negative
rates of screens could be significantly reduced with in-
creasing replicates for each of the gRNAs. By engineering
guide RNAs with multiple internal barcodes (iBARs), the

enrichment of sgRNAs could be separately assessed with
their associated barcodes. This has largely eliminated the
codelivery of free riders with functional sgRNAs due to a
high-MOI infection, significantly improving screening effi-
ciency and accuracy in positive selection screens. However,
the high level of cytotoxicity induced by multiple DSBs in
high-MOI library construction hampered the application of
the iBAR approach in negative selection screens. To resolve
this issue, Xu et al. (2021c) reported a new genome-wide
CRISPR screening method, termed iBARed cytosine base
editing-mediated gene KO (BARBEKO). This new screen-
ing strategy uses CBE to generate gene knockout, thus
eliminating DSB-related cytotoxicity.
High-throughput functional genomics can be further

equipped with other technologies for a flexible readout.
CRISPR screens could be combined with single-cell se-
quencing that profiles transcriptome or chromatin accessi-
bility (Dixit et al., 2016; Jaitin et al., 2016; Rubin et al.,
2019). These methods present various advances in detecting
indirect or direct indices of sgRNA and linking rich in-
formation to single-cell identity (Jaitin et al., 2016; Mimitou
et al., 2019; Replogle et al., 2020; Rubin et al., 2019).
Combining gene perturbation and phenotypical information
offers a great opportunity to tackle the complexity of the
biological system, analyze genetic interactions at scale, and
dissect gene regulatory networks (Adamson et al., 2016;
Norman et al., 2019).
Functional genomic screens in primary cells, organoids,

and animals are expected to obtain more physiological in-
sights and relevant therapeutic targets. Although wtCas9-
based knockout screens are mostly used, DSB-induced cy-
totoxicity is prone to affect primary cells. A screening
strategy to avoid DSBs is to introduce gene knockout by base
editors (Billon et al., 2017) or other DSB-independent
CRISPR derivatives. BARBEKO has been developed to
avoid DSB-related disadvantages in comparison with
wtCas9-mediated knockout fitness screens (Xu et al., 2021c).
In particular, internal barcodes are integrated into sgRNAs to
facilitate high MOI-lentivirus transduction in various types
of cells.
For in vivo screens, vectors with improved delivery effi-

cacy, libraries that require fewer primary cells, and effectors
that provide more relevant functional insights are in high
demand. The in vivo screens can be roughly divided into two
conditions: transplantation-based in vivo screening and direct
in vivo screening (Chow and Chen, 2018). In transplantation-
based screens, sgRNA-containing tumor cells or activated
immune cells are transferred to recipient animals and sub-
jected to selection conditions (Chen et al., 2015a; Chen et al.,
2021; Dong et al., 2019). Although this approach raises
concerns about autochthonous microenvironment re-
presentation, the delivery efficacy is relatively high, and
delivered sgRNA would not interfere with the rest of the
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cells. Direct in vivo screening is more challenging regarding
delivery efficacy, library size, and cell-type specificity. The
hydrodynamic injection of sgRNA-containing plasmids can
be applied to screen only a handful of genes in hepatocytes
using a transposase system (Weber et al., 2015). Chen and
colleagues established an in vivo direct screening method to
investigate tumor suppressors by delivering a sgRNA library
directly into the mouse brain or liver with an AAV vector
(Chow et al., 2017; Wang et al., 2018a). These AAV-deliv-
ered sgRNAs are unable to integrate into the genome and
have to be decoded by targeted-capture sequencing. They
further generated AAV-sleeping beauty hybrid vectors for
immune cell delivery in vitro, and these vectors can poten-
tially be applied for direct in vivo screens (Ye et al., 2019).

Perspective

The CRISPR/Cas9 system has revolutionized high-
throughput functional genomics. The platform continuously
facilitates scientific inquiries and reveals exciting biological
findings, including host-microbe interactions, the function-
ality of immune cells, and cancer treatment candidates.
CRISPR/Cas9-based gene perturbations also advance our
capacity to study the functions of coding and noncoding
genomic elements.
Considering that not all CRISPR/Cas9 tools are compa-

tible with high-throughput purposes, collective efforts to
optimize the CRISPR/Cas9 system are highly appreciated.
Systematic approaches to optimize the platform would be
beneficial to all researchers. Beyond the optimization of li-
braries and Cas9 effector-related issues, the development of
new readouts and friendly pipelines is expected, including
bioinformatics-derived insights.
CRISPR/Cas9 knockout screens are widely used and ex-

hibit high consistency between independent screens from
different laboratories with similar experimental settings
(Goh et al., 2021; Shalem et al., 2014). Despite this en-
couraging reproducibility, it should be kept in mind that not
all significant factors can be identified using one system,
relating to the efficacy of guides, the specificity of effectors,
heterogeneity of gene expression in different cells, and ex-
perimental designs. Thus, applying different Cas9 effectors
and experimental settings to study the same scientific ques-
tion could be complementary to some prior studies.

The application of gene editing in animal model
construction

An increasing number of pathogenic mutations have been
identified in the postgenomic era. An animal model paves the
way for studying the disease’s progression and finding new
therapies in medicine. With the development of gene editing

tools that can precisely edit target sites, it has become in-
creasingly efficient to generate the desired animals. Hun-
dreds of different kinds of genetically modified animals
made with editing tools, especially CRISPR/Cas, have been
reported. Here, we review the progress of animal models
produced by ZFN, TALEN, and CRISPR/Cas. We will then
briefly introduce some established models related to pre-
venting human diseases and discuss the future development
of animal models.

Methods to produce the animal model

RNAi and antisense oligonucleotides (ASOs) can knock-
down target gene expression in animals, but neither allows
the generation of stable gene knockouts. Homologous re-
combination (HR) in embryo stem cells is a conventional
method to generate gene-editing animals, which requires
more than one year to obtain the desired phenotypes. (Dow
and Lowe, 2012). Gene-editing technologies significantly
improve editing efficiency by more than two orders of
magnitude by making DSBs (Rouet et al., 1994). The main
process to generate genetically modified animals is to deliver
the editing system into the target cells or tissues. For gene
knockout via NHEJ, only an editing system was applied. For
gene substitution or insertion via HDR, the repair donor
should be delivered with the targeting system. The donor
may be single-stranded oligodeoxynucleotides (ssODNs) or
double-stranded DNA (dsDNA) (Zhang et al., 2021). The
editing system could also be used in different formats, in-
cluding Cas9-sgRNA RNP (Menchaca et al., 2020), RNA
(Yang et al., 2013b), virus particles (Swiech et al., 2015),
plasmids (Xue et al., 2014), cationic lipid nucleic acids
(Zuris et al., 2015), and lipid nanoparticles (Musunuru et al.,
2021). Because of the different applications and animal
species, there are three main methods to generate genetically
modified animals (Figure 2). We will summarize the pro-
gress for each method and discuss its advantage and dis-
advantage.

Embryo microinjection
Microinjection technology is more than 100 years old. Gene
editing using embryo microinjection has been widely applied
in many animal species, such as mice (Wang et al., 2013),
rats (Ma et al., 2014), monkeys (Niu et al., 2014), pigs (Wang
et al., 2015b; Wang et al., 2016; Zhou et al., 2016), goats
(Wang et al., 2015a), sheep (Menchaca et al., 2020), zebra-
fish (Auer et al., 2014) and many other species. All three
editing systems, especially CRISPR/Cas9, have been used
for embryo microinjection (Martinez-Lage et al., 2017; Sato
et al., 2016). The wide application of embryo microinjection
is based on editing efficiency. For example, it takes only
approximately six months to obtain the desired mouse, re-
gardless of knockout (Li et al., 2013), knock-in (Gurumurthy
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et al., 2019), or base editing (Ryu et al., 2018). With the
development of instruments, it has become more convenient
to handle embryo injection with square-wave electropora-
tion, which does not need an experienced operation (Xu,
2019). Because of the heterogeneity of NHEJ, which may
result in mosaics, desired animals may be obtained in the F1
generation, especially for gene knock-in. It has been reported
that RAD51 delivery facilitates homozygous conversion,
which may be applied to generate homozygous animals in F0
in the future (Wilde et al., 2021). For base editing, it is
possible to obtain homozygous mutant animals because of
the homogeneity and high efficiency of the editing results.
Prime editing systems are opening new avenues for point
mutation, deletion, and insertion (Anzalone et al., 2019). The
improved version may help produce animal models with
different kinds of mutations (Liu et al., 2021b). For some
species, the embryonic stem cells (ESCs) or induced plur-
ipotent stem cells (iPSCs), edited ESCs or iPSCs could be

transferred into the blastula to obtain the desired animals. In
such cases, the desired animal model should be produced
only when the edited cells are germline cells.

Somatic cell nuclear transfer
Somatic cell nuclear transfer (SCNT) provides another
method to produce animals with a consistent genetic back-
ground. SCNT has been applied in more than 20 different
species, including pigs, mice, monkeys (Liu et al., 2018b),
and others. For gene editing animal models using SCNT,
fetal fibroblasts are used to receive the editing system, and
then the positive cell clone will be picked and used as the
donor for SCNT. Pigs and monkeys are two important model
animals in human medicine. Gene editing combined with
SCNT has been achieved in both species (Liu et al., 2018b;
Yan et al., 2018; Zhou et al., 2015). The advantage of SCNT
is that the animals produced by this technology are consistent
without mosaics (Ryczek et al., 2021). For large animals,

Figure 2 Animal models produced by different methods. There are many different methods to generate animal models. Here, we use monkeys as an
example to summarize three main methods. A, Embryo microinjection is widely used to generate animal models. In this method, mosaic animals will be
produced in the F0 generation, and only the edited germ cells could pass the desired type to the offspring. For some editing methods, such as the base editing
system, the desired animals could be established in the F0 generation. B, Gene editing combined with somatic cell nuclear transfer (SCNT) is another method
to generate animal models. The editing system is delivered into fetal fibroblasts, and then the desired cell line is selected. For gene knockin, both positive and
negative selection are used. The positive cells are then used for SCNT. For this method, the F0 generation will be the desired animal model. C, For some
diseases, such as cancer, in situ injection will satisfy the medical demand. AV, adenovirus.
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gene editing combined with SCNT has an advantage com-
pared with embryo microinjection. The disadvantage of
SCNT is abnormal development and poor efficiency. Some
effective improvements will be useful for its application
(Czernik et al., 2019).

In situ injection
The animal models produced by embryo microinjection and
SCNT have modified genes in all tissues. For conditional
editing animal models, the Cre model could be used, and it
will take a long time to observe the phenotype. For some
human diseases, such as cancer, tumor cells initiate in some
tissues, not the whole body. In situ injection showed an ad-
vantage for this purpose. Gene editing in adult animals could
be used to simulate the development of tumor cells (Zuck-
ermann et al., 2015). Recently, different methods have been
reported to study the tissue-specific functions of genes. One
of them is to establish a model with Cas9 expression in a
specific tissue, and then the sgRNA could be introduced into
animals (Carroll et al., 2016). Another method is to inject
Cas9 and sgRNA simultaneously (Zuckermann et al., 2015).
The injection methods and the package of the editing system
vary. Tail intravenous injection, tissue injection (Zuck-
ermann et al., 2015; Zuris et al., 2015), and intraperitoneal
injection (Carroll et al., 2016) have all been reported. There
are several options for the delivery of the editing symptoms,
such as adeno-associated virus (Lin et al., 2020), adenovirus
(Ding et al., 2014a), lipid nanoparticles (Musunuru et al.,
2021), plasmid (Xue et al., 2014), and cationic lipid nucleic
acid (Zuris et al., 2015). Furthermore, to accurately control
gene expression after injection, some inducible elements are
used, such as light (Konermann et al., 2013) and drugs (Dow
et al., 2015). Somatic gene editing through tissue injection
has been applied in several kinds of cancer (Maresch et al.,
2016; Sánchez-Rivera et al., 2014; Zuckermann et al., 2015).
Compared to embryo microinjection and SCNT, tissue in-
jection requires less time to observe the desired phenotype,
although the editing efficiency of this method should be
improved.

Animal models promote mechanistic studies and treatment
of human diseases

Gene editing technology greatly speeds up the production of
animal models, which help to interrogate human diseases.
Here, we summarize the progress on animal models de-
pending on the disease categories. There are also animals
that are used as tools for producing specific models, such as
Cas9-expressing pigs (Wang et al., 2017b). Instead of listing
all reported animal models made of editing technology, we
focus on some representative cases of human diseases,
especially large animals, e.g., nonhuman primates (Chen et
al., 2016) and pigs (Ladowski et al., 2019).

Cancer
Cancer, as one of the most detrimental diseases involving
multiple processes, is responsible for the loss of tremendous
amounts of life every year. Suitable animal models may help
to recapitulate the underlying mechanism of cancer devel-
opment (Mao et al., 2016; Torres-Ruiz and Rodriguez-Per-
ales, 2015). The gene-editing system makes it possible to
generate multiple gene mutations and paves the way to in-
terrogate the development and progression of cancers. Some
animal models have been established to target the genes re-
lated to given cancers. Xue et al. (2014) used hydrodynamic
injection to deliver a CRISPR plasmid to the liver in mice.
Three genes, Pten, p53, and CTNNB1, were targeted. The
editing efficiency for Pten was approximately 2.6%±1.4%.
They found that a mutation of Pten would elevate Akt
phosphorylation and lipid accumulation in hepatocytes. Platt
et al. (2014) demonstrated that targeting KRAS, p53, and
LKB1 in Cre-dependent Cas9 knock-in mice would lead to
macroscopic tumors of adenocarcinoma pathology in lung
adenocarcinoma. They used AAV as a donor to generate the
KRASG12D mutation, and the efficiency was approximately
1.8% at nine weeks postdelivery. Maresch et al. (2016) de-
livered CRISPR/Cas9 targeting multiple genes to the pan-
creas of adult mice, and they observed that 54% of the mice
developed pancreatic cancer within 24 weeks. There will be
large animal models and potential target genes available in
the future. Thus far, mice and zebrafish are the two main
species that have been leveraged to produce models for
cancer research (Li et al., 2021d). There will be more large
animal studies and novel genes to be targeted in the future.

Neurological disorders
Neurological disorders are the leading cause of disability
and greatly compromise the quality of life, such as Alz-
heimer’s disease, Huntington’s disease, Parkinson’s dis-
ease, amyotrophic lateral sclerosis, and stroke (Choong et
al., 2016). There are many mouse models for neurological
disorders (Swiech et al., 2015; Tsuchiya et al., 2015). Be-
cause of the difference between human and rodent models,
most neuroprotective therapies fail at the stage of transla-
tion despite the fact that the animal model plays a vital role
in studying such diseases (Chesselet and Carmichael,
2012). The wide use of gene editing systems makes it
convenient to simulate gene mutations in large animals,
such as monkeys (Kang et al., 2019). Large animals may be
more suitable for neurological disorders. Zhou et al.
(2019b) generated the SHANK3-mutant macaques. The
sgRNA targeted exon 21 of the SHANK3 gene, and the
editing system was microinjected into the embryos. Finally,
they obtained five live newborns, 2 of them did not have the
wild-type genotype. The correct phenotype of animals ex-
hibited sleep disturbances, motor deficits, and increased
repetitive behaviors, which is consistent with autism
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spectrum disorder. Chen et al. reported that they generated
TALEN-edited MECP2 mutant cynomolgus monkeys.
They microinjected TALEN-RNA into embryos and ob-
tained five female mutants. After a comprehensive analysis
of the mutant monkeys, they found a series of physiologi-
cal, behavioral, and structural abnormalities resembling
clinical manifestations of Rett syndromes (Chen et al.,
2017b; Novarino, 2017). Yan et al. (2018) used CRISPR/
Cas9 and SCNT to establish a knockin pig model that ex-
presses full-length mutant huntingtin. They transfected fe-
tal pig fibroblast cells with Cas9, sgRNA and the donor. A
total of 2,430 fetal pig fibroblast cell clones were picked,
and 9 of them contained heterozygously expanded human
HTT exon 1. One of these was chosen for SCNT. The mu-
tant pigs showed consistent movement, behavioral ab-
normalities, and early death, which conformed to the
phenotype of Huntington’s disease. Gene editing and SCNT
are widely used in large animal models to avoid mosaics
and heterogeneity (Cibelli and Gurdon, 2018; Cyranoski,
2018).

Cardiovascular disease
Cardiovascular disease (CVD) is the first-largest disease in
terms of morbidity and mortality. There are several types of
cardiovascular disease that are the leading causes of mor-
bidity and mortality (Savoji et al., 2019). There is an urgent
need to develop animal models for mechanistic studies and
therapeutic evaluation. Many genes or single nucleotide
polymorphisms are related to CVD, such as PCSK9 and
APOE (Heianza and Qi, 2019). Animal models targeting
different genes have been established (Carreras et al., 2019;
Carroll et al., 2016; Chadwick et al., 2017; Ding et al., 2014a;
Musunuru et al., 2021; Wang et al., 2018d; Yuan et al., 2018).
Ding et al. (2014a) used adenovirus to deliver a CRISPR/
Cas9 system targeting the Pcsk9 gene in mouse liver. The
editing efficiency of Pcsk9 was as high as >50%. They found
that the mouse had decreased plasma levels of PCSK9.
Carreras et al. (2019) generated a liver-specific human
PCSK9 knock-in mouse model. The human PCSK9 gene was
inserted at the Rosa 26 locus. The positive ES clone was
picked using neo and DTA elements. The mutant model
showed a human-like hypercholesterolemia phenotype.
Musunuru et al. (2021) used the base editor in living cyno-
molgus monkeys to target the PCSK9 gene and demonstrated
that the monkeys had reduced blood levels of PCSK9 and
low-density lipoprotein cholesterol. Carroll et al. (2016)
generated cardiac-specific Cas9 transgenic mice and then
used adeno-associated virus 9 to target Myh6. The mice
displayed severe cardiomyopathy and loss of cardiac func-
tion. Considering the complexity of CVD, an increasing
number of animal models that target different genes should
be produced. Animal models will benefit drug screening
(Savoji et al., 2019).

Xenotransplantation
Xenotransplantation provides an alternative method for al-
leviating the shortage of organs for human transplantation.
Most recent xenotransplantation research has focused on
genetically modified pigs. Niu et al. (2017) used CRISPR/
Cas9 to inactive all the porcine endogenous retroviruses in
pigs. The cell surface carbohydrate antigens in pigs preclude
the success of porcine xenografts. Many studies have fo-
cused on the elimination of the surface carbohydrate antigens
(Butler et al., 2016; Fischer et al., 2020; Fu et al., 2020;
Ladowski et al., 2019; Ryczek et al., 2021). In the future, the
“ideal” modified pig could be produced with advanced gene-
editing technology for the benefit of patients.

Regeneration
Regeneration means the ability to replace or restore the in-
jured body. The success of regeneration in mammals will
greatly benefit patients. The mechanism of regeneration re-
mains to be elucidated. Lizards, salamanders, and zebrafish
show the ability to regenerate (Daponte et al., 2021). Mod-
ified animal models should be generated to uncover the
mechanism of regeneration. Recently, genetically modified
lizard and zebrafish have been reported (Auer et al., 2014;
Rasys et al., 2019). In the future, with the help of gene
editing, animal models may help to achieve regeneration in
mammals.

Development
Some gene mutations result in aberrant development, such
as adrenal hypoplasia congenita (AHC), which is caused by
a DAX1 mutation. Kang et al. generated the DAX1 mutation
in cynomolgus monkeys. These DAX1-deficient monkeys
showed defects in adrenal gland development and abnormal
testis architecture with small cords. The observed pheno-
type resembles the findings in human patients, demon-
strating that the animal models were suitable for AHC. The
SIRT6 gene encodes a longevity protein in rodents, and its
function in primates remains unknown. Zhang et al. (2018c)
produced the SIRT6 knockout in cynomolgus monkeys,
which showed developmental retardation. These results
may provide mechanistic insight into human perinatal
lethality syndrome. African turquoise killifish is a naturally
short-lived vertebrate and a good model to study aging.
Harel et al. (2015) reported a platform that could generate
genetically modified killifish for aging research. They ac-
quired Tert mutant killifish using CRISPR/Cas9 and found
that TertΔ8/Δ8 fish exhibited a progressive loss of fertility in
the first generation.

Other Mendelian genetic diseases
There are many other disease-related animal models. Huang
et al. (2019) produced HBB-deficient Macaca fascicularis
monkeys manifesting severe β-thalassemia phenotypes,
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which could be a valuable model for studying the me-
chanism of β-thalassemia and evaluating therapeutic inter-
ventions and drug effects. Chen et al. (2015b) reported the
disruption of the dystrophin gene in rhesus monkeys and
found that the mutant monkeys presented markedly de-
pleted dystrophin and muscle degeneration. Lin et al.
(2020) generated a nonhuman primate model by subretinal
delivery of an AAV-mediated CRISPR-Cas9 system tar-
geting CNGB3. The editing efficiency was 12%–14%. They
observed a reduced response of electroretinogram in the
central retina. Menchaca et al. (2020) produced a sheep
model with mutations in the Otof gene. They used CRISPR/
Cas9 combined with an ssODN to generate mutant lambs. A
total of 17.8% of the lambs showed indels, and 61.5% of the
edited lambs carried knock-in mutations. Large animals
with disease-relevant mutation(s) may pave the way to treat
malfunctions and facilitate successful translation from an-
imals to humans.

Perspective

To date, mice are the most popular animals for simulating
human diseases. Genome editing technology is opening a
new avenue for efficiently producing animal models (Mar-
tinez-Lage et al., 2017). Considering the complexity of hu-
man diseases, it is pivotal to build suitable animal models.
Recently, most genetically modified animals have been
produced by knocking out target genes. In the future, animal
models not only provide tools to understand disease me-
chanisms but are also valuable tools to evaluate therapeutics
and clinical interventions, such as large animals and huma-
nized animals.
Some characteristics of large animals, such as neuroana-

tomical, physiological, perceptual, and behavioral char-
acteristics, are relatively similar to those of humans (Izpisua
Belmonte et al., 2015). Large animals, such as chimpanzees,
monkeys, pigs, and dogs, not only provide materials to ac-
curately dissect disease mechanisms but are also suitable
models to cure diseases, especially in the brain.
Previously reported animal models were produced mainly

via gene knockout or point mutations. Base editing system
and prime editing could efficiently achieve the base tran-
sition, transversion, insertion or deletion of a small frag-
ment. It is still difficult to precisely handle large fragments.
Few animals were obtained by replacement or knocking in
the large fragment. Although some methods have been re-
ported to insert large fragments, such as the INTEGRATE
system (Vo et al., 2021), transposon-directed integration
(Klompe et al., 2019; Strecker et al., 2019b) and CRISPR-
Retron system (Sharon et al., 2018), their applications in
mammals remain to be tested. The efficient generation of
humanized animals, especially large animals, will be a fu-
ture direction.

Diagnosis

The development of CRISPR diagnosis

In addition to its application in genome editing, CRISPR
technology has recently been repurposed for the detection of
target nucleic acids, among other tasks (Leung et al., 2021;
Li et al., 2019b). Compared with traditional molecular di-
agnostic methods such as polymerase chain reaction (PCR),
CRISPR-based diagnostic methods have shown many ad-
vantages in rapidness, accuracy, and portability and have
been called next-generation molecular diagnostics (MDx)
(Chertow, 2018). Based on the catalytic principles of the
employed Cas proteins, the recently developed CRISPR di-
agnosis (CRISPR-Dx) systems can be simply classified into
two categories (Figure 3). The first category employs Cas9 to
detect target nucleic acids with the help of its high specificity
in nucleic acid recognition. The second category uses Cas
proteins with trans-cleavage activities, such as Cas12 and
Cas13, and shows high specificity and sensitivity in detect-
ing both nucleic acids and other molecules of interest (Li et
al., 2019b).

Cas9-based CRISPR-Dx
The utilization of Cas9 and its mutants in nucleic acid de-
tection undoubtedly constituted the prologue of CRISPR-Dx
(Deng et al., 2015; Pardee et al., 2016). With the combination
of an isothermal RNA amplification method called NASBA
(nucleic acid sequence-based amplification), Cas9 was suc-
cessfully used for pathogen diagnostics (Pardee et al., 2016).
The obtained method, namely, NASBACC (NASBA-
CRISPR Cleavage), takes advantage of Cas9-mediated pre-
cise cleavage and discriminates between distinct viral strains
with single-base resolution. Specifically, target RNA is first
amplified by NASBA, and the obtained amplicons are then
digested with Cas9. If the target sequence perfectly matches
the sgRNA, it will be cleaved by Cas9 and unable to trigger
the coupled toehold RNA sensors. However, if the target
sequence contains a mutation that prevents Cas9 cleavage,
the intact amplicons are then transcribed to RNA sequences
to switch on the sensor, resulting in a visible color change in
the paper disc (Pardee et al., 2016). Moreover, to achieve
high detection specificity in strain discrimination, strain-
specific PAM sites can be employed for designing sgRNAs.
Since then, several CRISPR-Dx systems have been created

by integrating Cas9 with different types of nucleic acid
amplification methods, including nicking endonuclease-
mediated nucleic acid amplification in CAS-EXPAR (Huang
et al., 2018), rolling circle amplification (RCA) in CasPLA
(Zhang et al., 2018b), RACE (Wang et al., 2020d), and the
PCR method ctPCR (Wang et al., 2018c) and CARP (Zhang
et al., 2018a). These methods mainly use Cas9-mediated
precise cleavage activities and detect either fluorescent
signals or amplicon sizes, all of which have shown both
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sensitivity and specificity in nucleic acid detection.
Another large group of detection methods employs dCas9,

which has lost its nuclease activity, to specifically recognize
and bind target nucleic acids. For example, the first CRISPR-
based nucleic acid detection system, termed CASFISH
(Cas9-mediated fluorescence in situ hybridization), em-
ployed fluorescently labeled dCas9 and sgRNA to precisely
target and visualize genomic loci, revealing their great po-
tential in genetic diagnosis (Deng et al., 2015). Recently,
with the employment of sgRNA linked with tandem MS2
aptamers and dCas9, a similar method, namely, RCasFISH
(CRISPR/dCas9-MS2-based RNA fluorescence in situ hy-
bridization assay), was developed to image and quantitate
RNA transcripts at a single-molecule level (Wang et al.,
2020c). Similar to Cas9, target nucleic acids can be pre-
amplified to enhance the dCas9-based detection sensitivity.
In addition to the fluorescently labeled probes, the coupled
reporter can be split into two half domains, each half fused
with an intact dCas9, and only when a pair of dCas9 binds to
the target sequences in proximity can the split halves re-
constitute an active reporter to produce signals. This strategy
has been successfully employed in the development of PCR
reporters (Zhang et al., 2017a) and RCH (Qiu et al., 2018),
both of which are of high specificity due to the coexistence of

two sgRNA binding sites as a prerequisite.
Scientists also use a Cas9 nickase (Cas9n) with only the

functional RuvC domain to develop isothermal amplification
systems for nucleic acid detection. For example, the
CRISRDA method integrates Cas9n with the strand dis-
placement amplification (SDA) method (Zhou et al., 2018),
while the Cas9nAR method merely uses two enzymes of
Cas9n and the Klenow polymerase (exo−) (Wang et al.,
2019c), both of which exhibit high sensitivity and single-
base resolution.
Other systems, such as CASLFA (Wang et al., 2020e), may

use either Cas9 or dCas9 for the specific recognition of target
sequences. CASLFA first uses either PCR or isothermal
amplification for nucleic acid preamplification and takes
advantage of the lateral flow assay (LFA) for convenient
signal detection. Another promising CRISPR-Dx strategy is
to apply a graphene-based field-effect transistor, which an-
chors the dCas9-sgRNA complex (dRNP) to a graphene
monolayer and detects the on-chip electrical response after
dRNP binds the target nucleic acid sequences. Notably, this
method (namely, CRISPR-Chip) directly detects target se-
quences within 15 min, with a sensitivity of 1.7 fmol L−1,
and is amplification-free (Hajian et al., 2019). On the basis of
CRISPR-Chip, the SNP-Chip is then created with the

Figure 3 CRISPR-based diagnostic systems for nucleic acid detection. Nucleic acid is first released from samples via direct lysis or nucleic acid extraction
procedures and detected by distinct CRISPR-Dx methods. Briefly, the CRISPR-Dx methods can be classified into two classes, including (I) amplification-
dependent and (II) amplification-free methods. (Ia) Target nucleic acids are first preamplified by either PCR or isothermal amplification methods, and the
amplicons are then detected by (d)Cas9-based or trans-cleavage-based next-generation CRISPR-Dx methods. (Ib) With the integration of isothermal
amplification and trans-cleavage reactions, target nucleic acids can be detected in a one-pot system. Usually, Cas12a is combined with (RT-)RPA, while
Cas12b and thermophilic (RT-)LAMP can be placed in one pot. (Ic) Cas9n is combined with isothermal amplification systems or Klenow polymerase to
achieve accurate and isothermal nucleic acid detection. (II) CRISPR-Dx systems for amplification-free nucleic acid detection.
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employment of either Cas9 or dCas9 and discriminates be-
tween homozygous and heterozygous DNA sequences from
unamplified patient samples (Balderston et al., 2021), de-
monstrating its great potential in diagnosis.

Cas12-based CRISPR-Dx
Cas9-based CRISPR-Dx technology has provided a new
method for rapid nucleic acid detection. In addition, the
discovery of the trans-cleavage activities of some Cas pro-
teins has accelerated the development and application of
CRISPR-Dx technologies, introducing the era of next-gen-
eration MDx. Usually, a Cas protein recognizes target nu-
cleic acid sequences with the guidance of crRNA and cleaves
the target sequences at specific sites, which is called cis-
cleavage (Li et al., 2018b). While some Cas proteins exhibit
nonspecific cleavage activities against nontarget single-
stranded nucleic acids, these activities are designated trans-
or collateral cleavage activities (Abudayyeh et al., 2016; Li
et al., 2018b). To date, two types of Cas proteins have been
demonstrated to possess trans-cleavage activities, including
the type V Cas12-family and the type VI Cas13-family
proteins (Li et al., 2019b).
The Cas12 protein recognizes and cis-cleaves the target

dsDNA or ssDNA under the guidance of crRNA or sgRNA
(Yang et al., 2016; Zetsche et al., 2015). Several Cas12 fa-
mily members have been characterized to possess trans-
cleavage activities, including Cas12a (previously called
Cpf1), Cas12b (previously called C2c1), and Cas12F (pre-
viously called Cas14) (Chen et al., 2018; Harrington et al.,
2018; Li et al., 2018b; Li et al., 2019a), and have been em-
ployed to develop diverse CRISPR-Dx systems. The trans-
cleavage activities of Cas12a were first identified during the
exploration of its cleavage activity against target ssDNA, and
researchers found that once a ternary complex of Cas12a,
crRNA and target dsDNA (or ssDNA) was formed, Cas12a
was triggered to randomly cleave nontarget ssDNA in the
system (Li et al., 2018b). Therefore, Cas12a has the prop-
erties of both target-specific binding and nonspecific ssDNA
trans-cleavage and was used to create the CRISPR-Dx
method, namely, HOLMES (a one-hour low-cost multi-
purpose highly efficient system) (Li et al., 2018c; Li et al.,
2019b), which exhibits attomolar detection sensitivity and
single-base resolution. Another group independently devel-
oped a similar Cas12a-based diagnostic method named
DETECTR (Chen et al., 2018). Both methods employ
Cas12a trans-cleavage activities to randomly cleave the
fluorophore quencher (FQ)-labeled ssDNA reporter, and the
only difference between them is that different pre-
amplification methods are applied, i.e., PCR in HOLMES
and RPA in DETECTR. Although the two methods were
published almost at the same time, HOLMES was patented
first and had a much earlier priority date than DETECTR
(Wang et al., 2017a).

On the basis of HOLMES (or DETECTR), dozens of
methods have recently been developed to further improve the
diagnostic performance and practicability, including sample
processing (Joung et al., 2020; Ning et al., 2021), target
nucleic acid amplification (Aman et al., 2020; Ding et al.,
2020; Lee et al., 2020), CRISPR reaction (Nguyen et al.,
2020; Yue et al., 2021) and signal detection (Dai et al., 2019;
Huang et al., 2020a; Nouri et al., 2020; Shao et al., 2019; Tao
et al., 2020; Zhang et al., 2020). For example, nucleic acids
can be released from direct sample lysis with an optimized
extraction solution and concentrated by magnetic beads,
eliminating tedious nucleic acid purification steps (Joung et
al., 2020; Ning et al., 2021). In the original procedure of
either HOLMES or DETECTR, the steps of nucleic acid
amplification and CRISPR trans-cleavage are separated.
Thus, a standard PCR amplification laboratory with in-
dependent areas of amplification and analysis rooms is re-
quired to prevent aerosol contamination while uncapping the
amplification tubes and transferring the amplicons. To make
the diagnosis more portable, Cas12a is then integrated with
isothermal amplification methods such as RPA to create a
one-pot detection system (Nguyen et al., 2020; Yue et al.,
2021). The CRISPR reaction conditions have also been op-
timized, including the reaction buffer and the crRNA se-
quences, to further improve the cleavage efficiencies
(Nguyen et al., 2020; Yue et al., 2021). In addition to
fluorescent ssDNA reporters, different types of labeling and
detection have been explored. For example, reporters can be
dual labeled with FAM and biotin, and CRISPR-Dx can be
combined with LFA technology (Bai et al., 2019; Broughton
et al., 2020; Lu et al., 2020; Mukama et al., 2020) to facilitate
the simple observation of diagnostic results on test strips
without the requirement of ancillary instruments. Alter-
natively, the Cas12a-based trans-cleavage reaction can be
integrated with cascade enzymatic and Fenton reactions,
leading to a visible color change to indicate the diagnostic
results (Huang et al., 2020a). Similar to the Cas9-based
CRISPR-Chip technology that detects electrical outputs, the
Cas12a-mediated trans-cleavage signals can also be read by
electrochemical responses (Dai et al., 2019; Zhang et al.,
2020) or solid-state nanopore sensors (Nouri et al., 2020),
both of which can improve the detection sensitivities and
reduce the detection time.
Cas12b is a type-Vb thermophilic Cas protein and exhibits

trans-cleavage activities at higher temperatures (e.g., above
55°C). It can be combined with high-temperature isothermal
reactions such as LAMP (loop-mediated isothermal ampli-
fication). With the use of Alicyclobacillus acidoterrestris
Cas12b (AacCas12b) and LAMP, the first one-pot CRISPR-
Dx system, namely, HOLMESv2, was developed, which
markedly reduces the risk of aerosol contamination (Li et al.,
2019a).
Cas12F, which is of type VF, also has trans-cleavage
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activities; however, unlike Cas12a and Cas12b, it recognizes
only ssDNA. Therefore, the Cas12F-based method, namely,
Cas14-DETECTR, requires a step to transform dsDNA
amplicons to ssDNA before Cas12F-mediated targeting. In
addition, compared to Cas12a and Cas12b, Cas12F has less
efficient trans-cleavage activities, and a much longer reac-
tion time is required, which may limit the breadth of its
application in diagnosis (Harrington et al., 2018).

Cas13-based CRISPR-Dx
The Cas13-family proteins instead recognize target single-
stranded RNA (ssRNA) and trans-cleave collateral ssRNA
sequences in the reaction system (Abudayyeh et al., 2016).
With the combination of Cas13a and RPA isothermal am-
plification, the first CRISPR-Dx method using Cas13 trans-
cleavage activities, namely, SHERLOCK (Specific High
Sensitivity Enzymatic Reporter UnLOCKing), was devel-
oped, exhibiting attomolar sensitivity and single-base mis-
match specificity (Gootenberg et al., 2017). Because of the
nonspecific properties of the trans-cleavage reactions,
HOLMES and SHERLOCK are unable to detect multiple
targets in one reaction, which limits the clinical applications
of the CRISPR-Dx tools because an internal control is
usually required in such scenarios. The multiplexed SHER-
LOCKv2 method was developed through the combination of
Cas13 and Cas12a to solve this problem (Gootenberg et al.,
2018). Different Cas13 orthologs have distinct cleavage
preferences for dinucleotide RNA reporters, reflecting the
orthogonality between Cas13 enzymes and enabling the
detection of multiple targets in one pot. As Cas12 is ortho-
gonal to Cas13, the multiplexity was further increased by the
addition of Cas12a, achieving 4-channel multiplexing in a
single SHERLOCKv2 reaction. In addition, SHERLOCKv2
successfully detects Dengue or Zika viruses and their mu-
tants via LFA strips, which further highlights its potential as
a multiplexable and portable nucleic acid detection system.
Moreover, on the basis of SHERLOCK, dozens of methods
have been recently developed and used in different scenarios,
including COVID-19 diagnosis (Ackerman et al., 2020;
Fozouni et al., 2021; Lee et al., 2020; Myhrvold et al., 2018;
Patchsung et al., 2020; Shinoda et al., 2021; Zhou et al.,
2021).

CRISPR-based non-nucleic acid detection

In addition to targeting nucleic acid diagnosis, CRISPR-Dx
can also be used for the detection of non-nucleic acid (NNA)
targets such as small molecules (Liang et al., 2019), metal
ions and sodium ions (Xiong et al., 2020), proteins (Liu et al.,
2021a), extracellular vesicles (EVs) (Zhao et al., 2020a;
Zhao et al., 2020b) and cells (Li et al., 2021a). During NNA
detection, NNA targets first lead to the generation of target
nucleic acids that can be recognized by Cas proteins and

trigger trans-cleavage reactions, which actually employ
CRISPR-Dx as a signal amplifier. For example, in combi-
nation with allosteric transcription factors (aTFs), Cas12a
can be used to rapidly detect small molecules from clinical
samples (Liang et al., 2019). Specifically, target small mo-
lecules release aTFs from binding to dsDNA sequences,
which serve as the target of Cas12a activator to trigger
Cas12a-mediated trans-cleavage reactions.
In addition to aTFs, functional nucleic acid aptamers can

be combined with Cas proteins to detect specific NNA tar-
gets, using both the high affinity and specificity of aptamers
and high trans-cleavage activities of Cas proteins. Usually,
the recognition and binding of NNA targets such as proteins
or small molecules can be induced to change the con-
formation of aptamers, which then serve as Cas12a activators
to produce trans-cleavage signals. In a recent study, allos-
teric aptamers were employed to recognize and bind the
penicillin-binding protein 2a (PBP2a) protein on the surface
of methicillin-resistant Staphylococcus aureus (MRSA),
which resulted in the release of the initiator sequence to
subsequently unfold a second hairpin probe to serve as the
Cas12a activator. The introduction of Taq DNA polymerase
and Nb.BbvCI nicking enzyme allows the continuous gen-
eration of Cas12a activators and enhances the detection
sensitivity (Wei, 2021).
Similar strategies have been developed to detect target

proteins on the surfaces of other bacteria, such as Acineto-
bacter baumannii (Li et al., 2020a) and tumor-derived EVs
(Li et al., 2021b). After the binding of target proteins, ap-
tamers can produce templates for in vitro transcription to
generate crRNA and then initiate the Cas12a trans-cleavage
reaction in a system that lacks crRNA (Zhao et al., 2020a).
When aptamers are combined with immunoassays, one ap-
tamer sequence is immobilized on the plate substrate to
capture target proteins, and the other aptamer sequence then
recognizes distinct structural conformations of the same
target and links the Cas12a ternary complex to produce
trans-cleavage signals (Li et al., 2021a). In addition, an ap-
tamer-based CRISPR-Dx system can detect small organic
molecules and metal ions, e.g., ATP and Na+ ions (Li et al.,
2021a; Xiong et al., 2020), similar to protein detection. In
combination with hybridization chain reaction (HCR), ap-
tamers may bind to tumor EV proteins and initiate the gen-
eration of Cas12a activators by HCR, assisting in the direct
detection of tumor EVs with high sensitivity (Xing et al.,
2020).
Deoxyribozymes (DNAzymes) are another type of func-

tional nucleotide that cleaves and releases specific DNA
sequences in the presence of certain metal ions. Using this
strategy, DNAzymes are integrated with the Cas12a trans-
cleavage system to facilitate the convenient and sensitive
detection of ions such as Pb2+ (Li et al., 2020a) and Na+

(Xiong et al., 2020).

676 Li, G., et al. Sci China Life Sci April (2022) Vol.65 No.4



CRISPR-Dx in the COVID-19 pandemic

The outbreak of the COVID-19 pandemic has caused mil-
lions of deaths worldwide and is still disrupting livelihoods
and threatening human life and health. Diagnostic tools for
the pathogenic SARS-CoV-2 virus that use either im-
munochromatography or reverse transcription (RT) real-time
PCR (RT-qPCR) technology were successfully developed
soon after the outbreak (Corman et al., 2020; He et al., 2020).
Although the immunology solution is of great convenience,
the low accuracy and sensitivity are a concern. PCR, in
contrast, is well known for its robustness and accuracy;
however, the need for specialized machines and laboratories
may prevent it from being used in decentralized scenarios.
With the aid of CRISPR technologies, dozens of CRISPR-
Dx systems have been developed, aiming to provide SARS-
CoV-2 diagnosis with high specificity, sensitivity, rapidness,
and convenience (Ding et al., 2020; Fozouni et al., 2021;
Ganbaatar and Liu, 2021; He et al., 2020; Huang et al.,
2020b; Joung et al., 2020; Ning et al., 2021; Patchsung et al.,
2020; Shinoda et al., 2021).
By integrating Cas trans-cleavage reactions with either PCR

or isothermal amplification, the CRISPR-Dx methods can
further improve the specificity and sensitivity of amplification
methods (Huang et al., 2020b; Joung et al., 2020). For ex-
ample, due to the limitations of RT-qPCR technology, high Ct-
values are frequently encountered during SARS-CoV-2 diag-
nosis, possibly resulting in both false-positive and false-ne-
gative diagnostic results (Li et al., 2020c; Wernike et al., 2021;
Xiao et al., 2020). HOLMES was employed to solve this
problem, and the RT-qPCR amplicons can be further analyzed
by Cas12a-based diagnosis, establishing a specific enhancer
for the identification of nucleic acids amplified by a PCR
(SENA) diagnostic system with improved sensitivity and
specificity (Huang et al., 2020b). Similarly, Cas12a has been
combined with RT-RPA to develop a sensitive diagnostic
system for SARS-CoV-2 detection (Ning et al., 2021).
LAMP has been demonstrated as an efficient isothermal

method for nucleic acid amplification and detection, but it
has a high false-positive rate. To solve this problem and
achieve convenient SARS-CoV-2 detection, researchers de-
veloped the one-pot STOPCovid.v2 method, which re-
sembles HOLMESv2 in principle (Li et al., 2019a), with the
use of LAMP for preamplification and thermophilic Alicy-
clobacillus acidophilus Cas12b (AapCas12b) for trans-
cleavage and signal output (Joung et al., 2020). Because
AapCas12b is resistant to high temperature, STOPCovid.v2
can be carried out at 60°C to facilitate LAMP pre-
amplification and exhibits a higher detection sensitivity than
HOLMESv2, which is performed at 55°C (Li et al., 2019a).
In addition, magnetic beads are used to enrich the total nu-
cleic acids from the lysed samples, which further enhances
the detection sensitivity of STOPCovid.v2 (i.e., 33 copies per

milliliter) far beyond the requirement of the Centers for
Disease Control and Prevention (CDC) for the RT-qPCR test
(Joung et al., 2020). As no more expensive instrument than a
heat block is required, STOPCovid v2 can be used to facil-
itate COVID-19 diagnosis in areas lacking sophisticated
medical instruments.
Several amplification-free CRISPR-Dx systems using Cas

trans-cleavage activities have been successfully developed
and shown competitiveness in COVID-19 diagnosis (Fo-
zouni et al., 2021; Liu et al., 2021a; Shi et al., 2021; Shinoda
et al., 2021; Tian et al., 2021; Yue et al., 2021). To increase
the detection sensitivity, more than one crRNA targeting the
SARS-CoV-2 RNA sequence can be used, and amplification-
free detection can be accomplished within 30 min with a
sensitivity of approximately 100 copies per microliter (Fo-
zouni et al., 2021); however, this sensitivity may still require
improvement to meet the CDC criteria. Alternatively, un-
amplified target nucleic acids can be remarkably con-
centrated in picolitre-sized droplets with the ultralocalization
of Cas13 trans-cleavage reactions by means of droplet mi-
crofluidics (Tian et al., 2021), and the system shows ex-
tremely high sensitivity and enables the absolute digital
quantification of target RNAs at the single-molecule level
without preamplification.

Summary

CRISPR-Dx began in 2015 when the CASFISH system with
CRISPR-dCas9 was developed (Deng et al., 2015). The
discovery of the trans-cleavage activities of Cas12 and
Cas13 has aroused further interest in developing next-gen-
eration molecular diagnostic tools (Chertow, 2018). Because
of the outstanding performance, two CRISPR-Dx products
were issued an Emergency Use Authorization (EUA) for
COVID-19 diagnosis last year, including the Cas13-based
Sherlock CRISPR SARS-CoV-2 Kit by the Food and Drug
Administration (FDA) in the US and the Cas12-based 2019-
nCoV Nucleic Acid Detection Kit (CRISPR Immunology)
by the National Medical Products Administration (NMPA) in
China. With an increasing number of in vitro diagnostic
(IVD) products on the market, CRISPR-Dx might eventually
enter clinical use.
Because of the specificity and the trans-cleavage activity

of Cas proteins, CRISPR-Dx systems have shown great ad-
vantages in detection, including sensitivity, accuracy, rapid-
ness, and portability (Li et al., 2019b). Several amplification-
free CRISPR-Dx systems have been developed using either
Cas12 or Cas13 (Fozouni et al., 2021; Liu et al., 2021a;
Shinoda et al., 2021; Tian et al., 2021) with optimization of
the reaction system and readout-related sensitivity. They
show great potential in the diagnosis of pathogens and tu-
mors. Although Cas9 can be integrated with a graphene-
based field-effect transistor to achieve the amplification-free
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detection of target nucleic acids (Balderston et al., 2021;
Hajian et al., 2019), it might be less competitive in cost. In
addition, the isothermal trans-cleavage activity has brought
both sensitivity and rapidness to CRISPR-Dx methods. This
may cause difficulties in the accurate quantification of target
nucleic acids. In accordance with the principles of digital
PCR, CRISPR-Dx is combined with droplet- or chip-based
partition technology to achieve absolute quantification
(Shinoda et al., 2021; Tian et al., 2021; Yue et al., 2021).
Multiplexing is another important factor that influences the

application of MDx technology. Although SHERLOCKv2
supports the one-pot detection of four targets with the use of
Cas13 orthologs and Cas12 proteins (Gootenberg et al.,
2018), there are still challenges in multiplexed detection,
including the fragility of the system using multiple enzymes
and the relatively high background signals. Therefore, the
majority of CRISPR-Dx trans systems detect one target in
one reaction system, and novel solutions are needed to fa-
cilitate robust multiplexed diagnosis.
It is expected that novel CRISPR-Dx methods will be

developed alongside the characterization of an increasing
number of CRISPR/Cas systems. For example, a recent
study found that crRNAs can be produced from cellular
RNAs after being hybridized to trans-activating crRNA
(tracrRNA) and cleaved by Cas9 in Campylobacter jejuni.
Based on this finding, a reprogrammed tracrRNA (Rptr) was
designed to cleave a desired RNA target to generate a
functional crRNA, which together with Rptr guided Cas9 to
cut target DNA. The method leveraging engineered tracr
RNAs and on-target DNAs for parallel RNA detection
(LEOPARD) was developed to enable the one-pot detection
of multiplexed RNA sequences with single-base resolution
(Jiao et al., 2021). However, to facilitate the use of LEO-
PARD for molecular diagnosis, the gel-based readouts in
LEOPARD could be replaced by more convenient ap-
proaches such as LFA or fluorescence in the future.

Therapeutic gene editing

The goal of gene therapy is to use various strategies to cor-
rect or manipulate gene expression to restore defective cell
functions or reinforce the biological properties of normal
cells to ameliorate symptoms or cure diseases with minimal
adverse events. Since the first clinical study undertaken at
the US National Institutes of Health in 1990, more than three
decades of exploration have built a solid basis for gene
therapy. The total number of clinical studies in this area has
surpassed 2,500, targeting monogenic diseases, complex
neurodegenerative disorders, infectious diseases, cancer, etc.
Since 2015, more than 10 gene therapy products have been
approved worldwide for cancer and genetic disorders. Like
the commentary published in Science, we would like to say

“gene therapy comes of age” (Dunbar et al., 2018).
There are two basic delivery strategies to fulfill the goal of

gene therapy: (i) introducing an integrating vector with ge-
netic material into proliferating cells (usually hematopoietic
cells) through an ex vivo process so that the donated DNA
will be replicated during cell division and therefore passed to
every daughter cell; or (ii) introducing exogenous nucleic
acids into postmitotic cells via nonintegrating vectors
through in vivo methods to achieve sustained expression of
the target gene in the entire lifespan of the cells. However,
the genetic modification of patient cells is potentially dan-
gerous, so safety issues are the most critical factors that have
raised serious concerns in gene therapy clinical trials. The
data accumulated since the 1990s make it clear that the risks
fall into two main aspects. The risk of insertional mutagen-
esis is a recognized disadvantage of integrating vectors. The
clinical ramifications of insertional mutagenesis were con-
firmed by the development of T cell leukemia in four young
patients who received retrovirus-mediated gene therapy for
X-linked severe combined immunodeficiency (SCID) (Ha-
cein-Bey-Abina et al., 2008). Second, immune-mediated
rejection is related to in vivo vector vehicles (Shirley et al.,
2020). For example, adenoviral vectors (AdVs) may induce a
strong immune response that leads to life-threatening mul-
tiple organ system failure (Raper et al., 2003). Currently,
vectors that cause severe immune side effects have been
weeded out. Lentiviral vectors have become the leading
system for ex vivo gene transfer (Naldini, 2011), while in
vivo therapies usually use AAV vectors (Wang et al., 2019a;
Witzigmann et al., 2020). AAV is considered a relatively safe
vector since it induces minimal immune responses. Its vector
DNA predominantly forms a stable episome that prevents
insertional mutagenesis at the cost of expression duration.
The limited duration of AAV vector and random insertion-
induced lentiviral vector tumorigenic potential are major
deficiencies of “traditional” gene therapy.
In contrast to traditional gene therapy technologies, which

can mediate only “gene addition” through various delivery
vectors, genome editing technologies, such as ZFNs, mega-
nucleases, TALENs and Cas9 nucleases, are able to generate
permanent, precise and flexible gene ablation, insertion or
correction at one or multiple target genes. The versatility and
simplicity of the revolutionary programmable nucleases,
especially the CRISPR/Cas9 system, quickly made them the
most critical technology in gene therapy. This chapter pro-
vides a brief summary of recent progress in genome editing-
mediated gene therapy, from bench to bedside.

In vivo gene therapy

Genetic diseases of the nervous system, vision, and hearing
loss as examples
Combining the progress of several research areas, including
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molecular biology, human genetics, delivery approaches, and
clinical translation, retinal gene therapy is progressively
being recognized as a potential intervention with great po-
tential for treating inherited retinal dystrophies (IRDs). Early
proof-of-concept clinical trials (NCT00481546,
NCT00516477, and NCT00643747) used AAV vectors to
deliver the gene encoding a 65-kD retinal pigment epithe-
lium-associated protein (RPE65) into the eyes of patients
carrying biallelic RPE65 recessive mutations (Bainbridge et
al., 2008; Cideciyan et al., 2009; Maguire et al., 2008).
Subsequent studies and clinical trials (NCT00481546,
NCT00643747, NCT01208389, and NCT00999609) de-
monstrated a statistically significant and clinically mean-
ingful difference between the intervention and control
groups without significant safety issues (Bainbridge et al.,
2015; Bennett et al., 2012; Bennett et al., 2016; Jacobson et
al., 2015; Maguire et al., 2009; Russell et al., 2017). All these
efforts allowed the FDA and EMA to approve Luxturna
(Spark Therapeutics) at the end of 2017 as a gene therapy
product to treat the monogenic disorder Leber congenital
amaurosis (LCA-2). The approval of Luxturna fueled addi-
tional trials for other IRDs (Chiu et al., 2021) focused on
LCA (NCT00481546, NCT02946879), retinitis pigmentosa
(RP) (NCT03328130, NCT04611503), X-linked retinitis
pigmentosa (XLRP) (NCT04671433, NCT03316560), and
achromatopsia (NCT02341807, NCT02077361). In addition
to AAV-mediated gene therapy, a few studies have tried to
correct the mutation at the mRNA level via antisense oli-
gonucleotides to restore the splicing of mutant pre-mRNA
(NCT03913143) (Chiu et al., 2021).
Most recently, preclinical studies have demonstrated the

promising application of CRISPR-Cas9-based therapeutics
in LCA, RP, or other retinal diseases. After Zhong et al.
(2015) used the CRISPR-Cas9 system to validate that the
expression of KCNJ13 is related to photoreceptor survival
and plays a role in LCA pathogenesis, researchers employed
it to edit a disease-associated gene in LCA. IVS26, an ade-
nine-to-guanine point mutation (c.2991+1655A>G) in intron
26, is a common mutation involved in LCA subtype 10
(LCA10) (Boye et al., 2014; den Hollander et al., 2006). This
mutation forms a new splicing donor site in the mRNA,
creating a premature stop codon that completely inactivates
CEP290. Thus, the Cas9 proteins from S. pyogenes or S.
aureus with dual sgRNAs were tested to remove or reverse
the mutation in the CEP290 gene to correct splicing and then
generate a functional CEP290 transcript. The experimental
data suggested that Cas9-based removal of the pathogenic
variant in the intron of CEP290 could be a potential treat-
ment strategy for LCA (Maeder et al., 2019; Ruan et al.,
2017). In the first Cas9-mediated in vivo gene therapy trial,
Allergan and Editas Medicine initiated the first patient dos-
ing in the phase 1/2 clinical trial of AGN-151587 (EDIT-
101) for the treatment of LCA10 (NCT03872479) with the

above strategy. In this trial, SaCas9 and sgRNAs were
packaged in AAV vectors and delivered via subretinal in-
jection.
As a monogenic hereditary retinal disorder, RP causes ir-

reversible blindness due to pathogenic (loss-of-function or
gain-of-function) mutations in more than 50 candidate genes.
Therefore, the CRISPR-Cas9 genome editing system is a
prominent tool to treat autosomal dominant RP (adRP). For
example, in rodent models, a recent study employed
CRISPR-Cas9 to knock out the mutant allele of the rho-
dopsin (RHO) gene, which is vital for retinal cell survival, in
rodent models (Bakondi et al., 2016). The disruption of the
murine S334ter mutation (Rho(S334)) halted retinal degen-
eration and improved visual function. In three other similar
human studies, the modification P23H in the RHO gene by
CRISPR-Cas9 significantly reduced the abundance of mu-
tant RHO protein (Giannelli et al., 2018; Latella et al., 2016;
Li et al., 2018a). Moreover, this genome editing system has
been utilized to understand the molecular biology of RP for
clinical interventions. For example, a nonsense point muta-
tion (Y347X) and an Xmv-28 insertion in the phosphodies-
terase 6B (PDE6B) gene are associated with RP in a rodless
(rd1) mouse model. One study demonstrated that the outer
nuclear layer (ONL) could be restored after Cas9 repair of
the Y347Xmutation (Wu et al., 2016). In another study, Cas9
was assembled with the E. coli RecA protein to repair this
mutation in rd1 mice. The most important contribution of
this study is the demonstration of the feasibility of Cas9-
induced HDR to treat rd1 disease and of the Cas9/RecA
system to improve HDR efficiency in vivo, which may also
benefit the treatment of other diseases (Cai et al., 2019).
A large number of people suffering from hearing loss

would also benefit from gene-editing technologies, since half
of hearing loss is caused by genetic mutations, among which
20% are gain-of-function mutation (Müller and Barr-Gille-
spie, 2015). Theoretically, these mutant alleles can be tar-
geted by CRISPR-Cas9 to correct the production of
malfunctional proteins. TMC1 is an essential protein for the
conversion of mechanical signals to bioelectrical signals
(Pan et al., 2013). The TMC1 c.T1253A mutation can cause
the hearing loss disorder DFNA36, a dominant genetic dis-
order. To test whether disruption of the c.T1253A allele via
Cas9 is able to rescue hearing loss in a DFNA36 mouse
model. Gao et al. (2018) utilized the lipid delivery system to
transmit Cas9/sgRNA into the inner ear of a mouse model.
They designed a series of sgRNAs containing the TMC1
mutation at the PAM proximal region to prevent cleavage of
the WT TMC1 allele. Their results showed that the treatment
robustly reduced progressive hearing loss, with higher hair
cell survival rates and lower auditory brainstem response
thresholds in the neonatal mouse model. In contrast to Gao’s
strategy, György et al. (2019) used AAV2/Anc80 as the de-
livery vehicle and SaCas9-KKH as the targeting nuclease.
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They placed the TMC1 mutation in the PAM region to se-
lectively target the mutant TMC1 allele and found that the
postnatal delivery of AAV-SaCas9-KKH/sgRNA durably
preserved the hearing capability of the mice for at least one
year. However, some TMC1 mutations, for example,
c.A545G, result in a recessive loss-of-function point muta-
tion, which is not suitable for the above disruption strategy.
To correct the point mutation and rescue the hearing ability
of TMC1 c.A545G mutated mice, Yeh et al. (2020) tested
several base editors. They chose the most efficient AID-
BE4max as the effector and selected the split-intein delivery
system to fit the base editor into a dual AAV package system.
They achieved approximately 2.3% desired base correction
in Tmc1 with ear injection of the dual AAV. Importantly,
mice with this correction rate could produce normal Tmc1
mRNA that reached 51% of the WT level, which restored the
low-frequency hearing of the mice 4 weeks after the treat-
ment.
Both retinal and hair cells are suitable targets for genome

editing-based gene therapy, since they can be efficiently
transduced through local injection via AAV, and the dose of
AAV required is much lower than the systemic injection
doses required for other diseases. Notably, even limited
editing efficiency demonstrated impressive efficacy in these
studies. This suggests that editing efficiency may not be
highly demanded in these applications.

Gene editing in liver gene therapy
The liver is one of the most targeted organs for gene therapy
because many metabolic diseases are caused by the dys-
function of genes related to the liver. In addition, the liver can
be efficiently transduced by viral or nonviral vectors. In early
clinical trials, researchers utilized the gene addition techni-
que to deliver healthy genes into the liver via lentivirus or
AAV. Several clinical trials aiming to cure hemophilia had
already shown encouraging results before the new gene-
editing tools were developed (Nguyen et al., 2021). The
development of efficient delivery technologies and the ad-
vances in gene editing tools have resulted in practical ap-
proaches to treat several genetic diseases via NHEJ or, in
some cases, even via HDR in the liver.
The PCSK9 gene, which is expressed exclusively in the

liver, is one of the candidate genes for treating cardiovascular
diseases (Seidah et al., 2014). Evidence has shown that a
gain-of-function variant of PCSK9 is linked to a high level of
blood low-density lipoprotein cholesterol (LDL-C) (Seidah
et al., 2014), a primary cause of cardiovascular diseases. In
contrast, people carrying loss-of-function PCSK9 variants
are asymptomatic, showing lower levels of LDL-C and re-
duced risks of cardiovascular diseases (Guo et al., 2020b).
Ding et al. (2014a) delivered Cas9/SgRNA targeting Pcsk9
into the mouse liver via injection of AAV8 particles. They
observed a mutagenesis rate of over 50% in Pcsk9, resulting

in ten times lower plasma Pcsk9 and a 35%–40% decrease in
blood LDL-C. Soon after Ding’s promising results, this
strategy’s long-term efficacy and safety issues were further
studied in mice and nonhuman primates via different pro-
grammable nucleases, including ZFN (Conway et al., 2019)
or meganucleases (Wang et al., 2018b). The results were
encouraging, as PCSK9 was efficiently and durably knocked
out in those experiments. All studies demonstrated a con-
siderable reduction in blood LDL-C, and no significant off-
target events or adverse effects were observed.
Apo (apolipoprotein) C3 is another risk factor associated

with a number of cardiovascular diseases through mediating
the metabolism of triglyceride (TG)-rich lipoproteins. Loss-
of-function mutations are associated with low levels of TG
and a decreased incidence of cardiovascular diseases
(Crosby et al., 2014). ApoC3 knockout in rabbits using ZFN
has shown that ApoC3 deficiency significantly accelerates
the catabolism of TG-rich lipoproteins in the liver and leads
to the resistance of KO rabbits to cholesterol diet-induced
hyperlipidemia and atherosclerosis (Yan et al., 2020; Yang et
al., 2013a). A recent work using CRISPR/Cas9 to inactivate
ApoC3 also showed a protective effect against athero-
sclerosis in hamsters (Guo et al., 2020a). These results
support therapeutic inactivation of ApoC3 as a strategy for
the treatment of hyperlipidemia and atherosclerosis.
For other metabolic liver diseases, such as hereditary tyr-

osinemia-I (HT-1) and primary hyperoxaluria type I (PH-I),
targeting an upstream gene to reprogram the metabolic
pathway could also be an effective approach. In HT-I, mu-
tations in the gene fumarylacetoacetase (FAH) result in the
accumulation of tyrosine and other toxic metabolic inter-
mediates, such as succinylacetone (Shao et al., 2014). The
current treatment for HT-I requires the daily ingestion of
nitisinone, an inhibitor of 4-hydroxyphenylpyruvate dioxy-
genase (HPD), which is the upstream enzyme for tyrosine
degradation (Holme and Lindstedt, 1998). The inhibition of
HPD will convert the accumulation of toxic succinylacetone
into its upstream intermediate—4-hydroxyphenylpyruvate
(4HPP), which is observed in the more benign disease HT-III
(Pankowicz et al., 2016). Following the above mechanism,
Pankowicz et al. (2016) delivered Cas9/sgRNA targeting the
Hpd1 gene into the murine liver via the hydrodynamic tail
vein injection of plasmids. A week after the injection, up to
20% of the Hpd allele was deleted. As the edited hepatocytes
have a growth advantage over diseased cells, they quickly
repopulated 99% of hepatocytes 8 weeks after treatment.
Similar to the treatment of HT-I, metabolic reprogramming

was performed in the treatment of PH-I. In PH-I, a mutation
in the AGXT gene leads to the failure of glyoxylate to gly-
cine conversion. The accumulated glycosylate is oxidized by
lactate dehydrogenase (LDH), causing the overproduction of
highly insoluble calcium oxalate (CaOx) crystals in the
kidneys (Zheng et al., 2020). An ongoing clinical trial to treat
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PH-I targeting the HAO1 gene via RNA interference reduces
the expression of glycolate oxidase, an upstream enzyme that
generates glyoxylate (Garrelfs et al., 2021) (NCT03681184).
Soon, the therapeutic effect of HAO1 disruption via
CRISPR/Cas9 was also validated in mice (Zabaleta et al.,
2018) and rats (Zheng et al., 2020). In both studies, the
treated animals exhibited alleviated symptoms, showing that
this strategy has great promise. Notably, although the use of
CRISPR/Cas9 or other nucleases to treat genetic diseases via
deletion of endogenous genes to reprogram metabolic path-
ways is effective, the long-term safety issue of this strategy
has yet to be extensively examined. Due to these concerns,
current clinical trials have focused mainly on RNAi strate-
gies to treat those diseases through in vivo gene manipula-
tion. However, an advantage of programmable nucleases is
that they avoid the repeat delivery of therapeutic vectors,
which could be painful and costly to patients. Recently, In-
tellia and Regeneron revealed milestone clinical data on
therapy for transthyretin (ATTR) amyloidosis, a disease
caused by misfolding and deposition of the transthyretin
protein. Their study delivered nanoparticles encapsulating
the mRNA of Cas9 and sgRNA targeting the transthyretin
(TTR) gene into the patients. Taking advantage of mRNA
avoids the long-term in vivo expression of Cas9, thus mini-
mizing the possibilities of off-target events and exogenous
DNA integration. More importantly, they demonstrated that
a single dose of NTLA-200 was able to reduce transthyretin
by 87% on average, which lasted for over a year without
relapse (NCT04601051) (Gillmore et al., 2021). As the ca-
pacity of AAVs is limited (approximately 4.7 kb), it is dif-
ficult to deliver genome-editing materials through a single
AAV vector. The clinical success of LNP-based Cas9/
sgRNA delivery is a critical landmark for both mRNA
medicine and genome editing therapeutics, as the short life of
mRNA would greatly reduce the potential off-targeting ef-
fects, and the LNPs would not induce immune tolerance,
which is the problem with repetitive dosing of AAV products
in patients with AAV antibodies.
In vivo gene therapy via DNA fragment integration may be

the greatest challenge in this field because conventional
DNA integration use the HDR pathway, which has an ex-
tremely low intrinsic frequency, especially in quiescent so-
matic cells. However, in some diseases, partial correction of
the mutated genes might significantly and durably relieve
their symptoms. A case in point is the potential gene therapy
for hemophilia. Guan et al. (2016) achieved a 0.5% correc-
tion of the f9 gene through hydrodynamic tail vein injection
of the Cas9/sgRNA plasmid and a donor fragment into the
mouse liver. They found that the treated mice had shortened
blood coagulation time and survived the tail-clip challenge,
although only a tiny portion of the liver cells was corrected.
Similar results were observed in the study for hemophilia A
(Chen et al., 2019a). To further increase the integration fre-

quency of large DNA fragments, Zhang et al. (2019a) har-
nessed NHEJ-mediated knockin and an AAV donor fragment
to treat hemophilia A. They achieved an in vivo knockin
frequency of 2% for the BDDF8 donor fragment (over
4.4 kb). Since AAV vectors are commonly used as delivery
vectors for nucleases and donors in gene therapies, an in-
crease in delivery efficiency might elevate both cleavage and
HDR efficiency. Yin et al. (2020) attempted to codeliver an
AAV receptor (AAVR) in a study on gene therapy for phe-
nylketonuria (PKU). The coexpression of AAVR sig-
nificantly increased the in vivo HDR efficiency by up to 20-
fold and ameliorated the blood Phe level, although the long-
term effects of AAVR overexpression need full investigation
in the future.
It is worth mentioning that most of the above editing

strategies are based on the creation of DSBs in the genome.
However, due to the potential risks of DSBs, researchers are
making gene-editing tools more precise on the one hand,
while on the other hand, they are looking for potential sub-
stitutes for the programmable nucleases. The invention of
base editors offered scientists alternative choices. Unlike
conventional programmable nucleases, base editors produce
few DSBs in the genome, and their efficiency outperforms
the traditional HDR pathway. Villiger et al. (2018) attempted
to treat a PKU mouse model via in vivo base editing. They
engineered the cytidine base editor (ABE) into an intein-split
system to fit each portion of the base editor into the capacity
limitation of the AAV particles. The AAV was then delivered
via tail vein injection. During the next 26 weeks, they ob-
served a continuous increase in the DNA and mRNA cor-
rection rates and a significant drop in the L-Phe level in the
treated mice, indicating the feasibility of this strategy.
Moreover, the high efficiency and flexibility of base editors
give researchers a greater capability to cure diseases. Beyond
correcting mutated base pairs, scientists are able to manip-
ulate mRNA splicing, including creating de novo start co-
dons and installing stop codons in the genome. In 2020, the
first gene therapy study evaluating ABE was performed by
Song et al. They combined ABE and the hydrodynamic tail
vein injection technique to restore a mutated splice donor site
in the fah gene in an HT-I mouse model (Song et al., 2020).
In the same year, Yang et al. (2020) managed to create a de
novo “ATG” via in vivo base editing, which helped to read
through the mutant fah gene in an HT-I mouse model. Re-
cently, Rothgangl et al. (2021) used an ABE to target the
splice donor site in intron 1 of the PCSK9 gene in macaques.
Their strategy led to a decrease of 95% in the PCSK9 level
within 48 h, and more importantly, a corresponding decrease
of 58% in LDL was observed as well.
While base editors are efficient and effective in gene

therapy studies, two major concerns affect the research field.
First, the bystander editing effect could narrow the potential
target scope of the base editors. Second, with the emergence
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of more sensitive detection methods, new off-target phe-
nomena of base editors could be discovered (Lei et al., 2021).
Therefore, a systematic off-target event inspection is sug-
gested for each target site before a clinical trial is initiated.

Ex vivo gene therapy

Gene therapy in hematopoietic stem cells
Due to the maturation of blood separation techniques, ex vivo
gene therapies mainly adopt hematopoietic progenitor/stem
cells (HSPCs) as the target. Initially, clinical trials took ad-
vantage of gene addition technology to treat inherited im-
munodeficiency disorders, including X-linked SCID and
adenosine deaminase (ADA) deficiency. In the above trials,
healthy donor genes encoding the γc or ADA protein were
delivered into the immune cells or later into the HSPCs of the
patients via retroviral or lentiviral particles. Treated cells
were then transplanted back to the patients to supplement the
proteins needed as the building blocks of the immune sys-
tem. The overall efficacy of the first attempts was quite ex-
citing. Although the therapeutic effect lasted only months in
some cases, others demonstrated that the concept of long-
term gene augmentation was feasible (Aiuti et al., 2002;
Aiuti et al., 2009).
Based on prior knowledge, when it became plausible that

genetic disorders could be cured by HSPC manipulation and
transplantation, β-thalassemia and sickle cell disease were
the first diseases to be targeted. Both diseases are caused by
mutations in the gene encoding β-globin, which normally
forms the hemoglobin tetramer with α-globin. Patients with a
severe type of both diseases have low oxygen-carrying he-
moglobin and depend on regular blood transfusions
(Thompson et al., 2018). Reactivation of the silenced gene γ-
globin, which acts as a substitute for β-globin, could cure
these two diseases. More importantly, studies suggested that
γ-globin could be reactivated by creating indels in the reg-
ulatory elements of the γ-globin promoter (−112 to −117)
region (Traxler et al., 2016) or of the +58 enhancer of a γ-
globin repressor, namely, BCL11A (Canver et al., 2015; Wu
et al., 2019). Immediately, various gene-editing studies were
performed using HSPCs to prove this concept via ZFN
(Bjurström et al., 2016), TALEN (Humbert and Kiem, 2015),
or, in most cases, via CRISPR/Cas9 (Canver et al., 2015; Wu
et al., 2019). In addition, edited HSPCs from patients were
viable and functional in nonhuman primates (Humbert and
Kiem, 2015; Humbert et al., 2018). In 2018, gene editing
companies, including Sangamo and CRISPR Therapeutics,
initiated phase 1/2 clinical trials evaluating the efficacy and
safety of editing the BCL11A enhancer to treat sickle cell
disease (NCT03745287) or β-thalassemia (NCT03432364,
NCT03655678). A year later, similar trials targeting
BCL11A were launched in China (NCT04211480,
NCT04390971). The results from these trials are astounding.

All patients receiving the treatment are able to produce
sufficient fetal hemoglobin, which helps them become in-
dependent of transfusions (Frangoul et al., 2021). In addition
to the γ-globin reactivation strategy for β-thalassemia, sci-
entists discovered other methods to restore β-globin. For
example, in β-thalassemia IVS-654, a C654-A transition
leads to aberrant β-globin pre-mRNA splicing, preventing
the synthesis of β-globin protein. Using programmable nu-
cleases, scientists successfully restored β-globin mRNA
splicing by targeting intron 2 of the β-globin gene (Xu et al.,
2015). Another more direct strategy for β-globinopathies is
to correct the disease-causing mutations via CRISPR/Cas9-
stimulated HDR (Dever et al., 2016; Wilkinson et al., 2021).
However, since HDR has a low spontaneous frequency,
whether enough corrected HSPCs can be enriched is the key
to the success of the treatment. Currently, a clinical trial
based on the HDR strategy has been initiated
(NCT04819841) by Graphite Bio. Notably, in addition to
nuclease-based gene-editing tools, base editors are beginning
to play an important role in the treatment of β-globino-
pathies. Reports have revealed that it is possible to reactivate
γ-globin by editing the BCL11A +58 enhancer (Zeng et al.,
2020) or HBG1/2 promoter region (Wang et al., 2020b).
Recently, results obtained by Gregory et al. demonstrated
that through an adenine base editor (ABE8e-NRCH), the
GAG(E) to GTG(V) mutation, which causes sickle cell dis-
ease, could be efficiently converted to a benign Makassar
variant (Newby et al., 2021). Since ABEs are able to convert
base pairs efficiently without inducing DSBs, which is su-
perior to Cas9-mediated mutagenesis, the sgRNA-in-
dependent off-targeting effects of the base editors still
require close attention. Scientists are devoting attention to
improving base editing technology through engineering base
editors and developing delivery technologies for Cas9 pro-
tein or mRNA to reduce off-target edits.

Gene editing in primary T cells for immunotherapy
In 1994, zinc finger proteins were first shown to repress the
function of oncogenic BCR-ABL fusion sequences by di-
rectly binding DNA (Choo et al., 1994). Later, zinc finger
proteins were coupled with nuclease to mediate gene dis-
ruption in various cell lines and primary cells, such as T cells
(Urnov et al., 2005). A double genetic disruption of TCR-β
and α-chain genes followed by the lentiviral transfer of a new
TCR into human primary T cells was first reported in 2012
(Provasi et al., 2012). The edited T cells treated with ZNFs
lacked surface expression of CD3-TCR and expanded with
the addition of interleukin-7 (IL-7) and IL-15. Another study
also disrupted TRAC, TRBC1, and TRBC2 using ZFNs to
generate universal chimeric antigen receptor (CAR) T cells
for multiple allogenic patients (Torikai et al., 2012). Later,
the same group used ZFNs to knock out the HLA-A gene in
CAR-T cells, further improving the universal CAR-T
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strategy (Torikai et al., 2013). Another study knocked down
the glucocorticoid receptor using ZFNs in modified cytolytic
T lymphocytes (CTLs), which were generated by introducing
a chimeric T-cell receptor consisting of an extracellular IL-
13 domain and a cytoplasmic CD3 domain (IL13-zetakine).
Thus, ZFN-modified glucocorticoid-resistant IL13-zetakine-
targeted CTLs retained their function in cancer patients re-
gardless of glucocorticoid treatment (Reik et al., 2008).
Only one year after the elucidation of TALE-DNA re-

cognition codes, TALEs were designed and linked to FokI to
establish the TALEN platform. It is worth mentioning that
after scaffold optimization, TALE showed comparable on-
target activity to benchmark ZFNs but lower cytotoxicity, at
least at three human loci tested (CCR5, IL2RG, AAVS1)
(Mussolino et al., 2011; Mussolino et al., 2014). The first
TALEN-mediated cell therapy to enter clinical trials has
focused mainly on the generation of universal CAR-T cells.
Cellectis SA has developed an allogeneic approach named
universal chimeric antigen receptor (CAR) T-cells targeting
CD19 (UCART19), which aims to offer standardized ther-
apeutics with good consistency and immediate availability.
Genetic manipulation involves TALEN mRNA-mediated
gene disruption against TCRα constant gene (TRAC) and
CD52. The preliminary results reported two phase 1 clinical
trials to evaluate the safety and antileukemic activity of
UCART19 in children and adults with relapsed or refractory
B-cell acute lymphoblastic leukemia (Benjamin et al., 2020).
Fourteen (67%) of 21 patients had a complete response or
complete response with incomplete hematological recovery
28 d after infusion. Patients not receiving CD52 targeting
alemtuzumab (n=4) showed no UCART19 expansion or
antileukemic activity. The median duration of response was
4.1 months, with ten (71%) of 14 responders proceeding to a
subsequent allogeneic stem-cell transplant. Progression-free
survival at 6 months was 27%, and overall survival was 55%
(NCT02808442, NCT02746952). A similar strategy was
applied to other CAR-T products in the Cellectis pipeline,
such as UCART123 targeting CD123, the primary low-af-
finity subunit of the IL-3 receptor, which is highly expressed
in some hematological cancers. The phase I UCART19 trial
was underway for AML (NCT03190278). Several other
TALEN-edited allogeneic UCART products have also en-
tered phase I clinical trials, including UCART22,
UCARTCS1, and ALLO-751 (NCT040993596,
NCT04142619, NCT04150497).
The first CRISPR/Cas9-mediated multiplex gene editing

in CAR-T cells was reported by the June group and Wang
group (Liu et al., 2017b; Ren et al., 2017). TRAC, B2M, and
PDCD1 were chosen as target genes in both studies. Elec-
trotransfer of Cas9 mRNA-sgRNAs was applied in June’s
study. After optimizing the electroporation conditions for
delivery, 80% single-gene KO efficiency and 65% dKO ef-
ficiency were obtained. Instead of Cas9 mRNA, the Wang

group delivered a RNP consisting of the Cas9 protein in
complex with sgRNAs and achieved efficient single- and
multiple-gene KO. In both studies, potent antitumor efficacy
of gene-edited CAR-Tcells was demonstrated in both in vitro
assays and tumor xenograft mouse models. Later, CRISPR/
Cas9-mediated KO of various genes in CAR-T cells or CD8+

T cells to eliminate various immune checkpoint genes
(PDCD1, LAG3, CTLA4, DGKα) (Jung et al., 2018; Rupp et
al., 2017; Zhang et al., 2019b; Zhang et al., 2017b), to inhibit
immune-suppressive signaling (TGFβ, A2AR) (Li et al.,
2020b), or to generate allogeneic CAR-T cells for the treat-
ment of T cell hematologic malignancies (CD7&TRAC) was
reported (Cooper et al., 2018). It is worth noting that tri-
phosphate at the 5′ end of IVT (in vitro transcription)-sgRNA
could initiate the innate immune responses of primary T
cells, impairing cell viability. Eliminating the triphosphate at
the 5′ end of IVT-sgRNA by CIP or using chemically syn-
thesized sgRNA solved this problem (Kim et al., 2018; Mu et
al., 2019). As with TALENs, the first CRISPR trial for gene-
edited cells was also T cells. They were first applied to treat a
patient with advanced non-small cell lung cancer
(NCT02793865). Many subsequent registered CRISPR trials
focused on the use of autologous T-cells, knocking out the
immune checkpoint inhibitor programmed cell death-1
(PD1) prior to reinfusion. Seven clinical trials targeting PD1
are currently in phase 1 (NCT02793856, NCT02863913,
NCT02867332, NCT02867345, NCT03545815,
NCT03747965, NCT04417764), mainly in China.

Gene editing in infectious diseases
The main strategy of antiviral therapeutics involves altering
the host genes required for viral infection or targeting the
viral genes essential for viral productivity (Kennedy and
Cullen, 2017). The strategy of genome editing-based HIV
therapy is to edit the gene encoding the receptor of HIV
infection in CD4+ Tor CD34+ hematopoietic stem/progenitor
cells and reinfuse the modified cells into patients.
The CCR5 gene encodes the HIV coreceptor, which is

utilized by HIV-dominant strains. Homozygosity of the
naturally occurring 32 bp deletion (delta32) in CCR5 confers
resistance to HIV-1 infection (Liu et al., 1996), and people
heterozygous for delta32 have a slower progression after
HIV infection, suggesting the feasibility of obtaining HIV
resistance by mutating CCR5 using genome editing tech-
nologies (Huang et al., 1996; Zimmerman et al., 1997). The
pioneering work in this field was done using ZFNs. In a
preclinical study, Perez et al. delivered ZFN into human
primary CD4+ T cells using a chimeric Ad5/F35 adenoviral
vector and achieved a 50% CCR5 disruption rate. HIV-1-
infected mice engrafted with CCR5-edited T cells had lower
viral loads and higher CD4+ T-cell counts than mice en-
grafted with control T cells (Perez et al., 2008). Based on this
promising therapeutic outcome, the first clinical usage of
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gene-edited cell therapy was conducted in 2009 by the
University of Pennsylvania in collaboration with Sangamo
Therapeutics, aiming to disrupt CCR5 by using ZFNs in
autologous CD4+ T-cells of HIV patients (NCT00842634)
(Tebas et al., 2014). The clinical results were revealed in
2014 with only 1 serious adverse event due to a transfusion
reaction, proving that the method was safe. After treatment,
blood HIV DNAwas decreased in all patients, and HIV RNA
became undetectable in one patient, suggesting the feasibility
of clinical application of gene editing. In addition to CD4+ T
cells, CD34+ HSPCs were also engineered to provide a more
durable source of HIV-resistant T cells (Allen et al., 2018).
Clinical trials using ZNFs (NCT02500849) and CRISPR/
Cas9 (NCT03164135) to disrupt CCR5 in CD34+ HSPCs
have also been reported (Xu et al., 2019). Although the
successful transplantation and long-term engraftment of
CRISPR-edited HSPCs were observed, the percentage of
CCR5 disruption in lymphocytes was only approximately
5%, which indicates the need for further improvement of this
approach (NCT03164135). In addition, TALEN was used to
disrupt CCR5, with relatively lower cytotoxicity and higher
specificity than ZFNs (Mussolino et al., 2014).
In addition to CCR5, C-X-C chemokine receptor 4

(CXCR4) is an important coreceptor for CXCR4-tropic
HIV-1. Thus, HIV-resistant CD4+ T cells that simultaneously
inactivate the coreceptors CCR5 and CXCR4 confer pro-
tection against HIV that uses either of the coreceptors (Di-
digu et al., 2014). Similar ex vivo work was also performed
using the CRISPR/Cas9 platform (Hendel et al., 2015;
Mandal et al., 2014). Instead of direct disruption of the viral
genome, researchers have also created alternative methods to
eliminate HIV infection. For example, taking advantage of
CRISPRa, a gene activation system that consists of a cata-
lytically dead Cas9 and a transcriptional activation domain,
scientists are able to reactivate HIV from its latency state (Ji
et al., 2016; Saayman et al., 2016). As a result of latency
reversal, cells that carry dormant HIVare exposed to immune
cells and eliminated.
Infection with high-risk human papillomavirus (HR-HPV)

is the main cause of cervical cancer, usually due to the per-
sistent expression of HR-HPV oncogenes E6 and E7. Using
gene editing to disrupt viral oncogenes is a potential ther-
apeutic strategy. The proof-of-concept work was done by the
Wang group in 2014 using ZFNs against E7 DNA in HPV16/
18-positive cervical cancer cells. Repressed xenograft for-
mation was also evidenced in vivo (Ding et al., 2014b). Later,
they reported similar work using the CRISPR/Cas system
(Hu et al., 2014) and TALENs (Hu et al., 2015). Based on
these promising preclinical data, four clinical trials were
registered to study these approaches in humans
(NCT02800369, NCT03057912, NCT03226470, NCT-
03057912).
The same strategy was also performed to remove other

viruses, such as herpes simplex virus (HSV) or hepatitis B
virus (HBV), from the genome. Recently, Yin et al. (2021)
proved that intracorneal delivery of lentiviral particles en-
capsulating Cas9/sgRNA targeting HSV could not only cure
herpetic stromal keratitis in a mouse disease model, but also
prevent HSV infection in a prevention model. Their mean-
ingful data also boosted the initiation of the corresponding
clinical trial (NCT04560790). HBV is one of the most im-
portant pathogens responsible for liver diseases. The HBV
genome exists as a double-stranded covalently closed cir-
cular DNA (cccDNA), which can be targeted by gene-editing
tools. Expression of ZFN pairs targeting the HBV genome
resulted in specific DNA cleavage and inhibition of active
HBV replication (Cradick et al., 2010; Weber et al., 2014). A
similar strategy was also applied using TALEN (Bloom et
al., 2013; Chen et al., 2014). Recently, CRISPR/Cas9 was
also employed to achieve highly efficient HBV genome
elimination (Dong et al., 2015; Ramanan et al., 2015). No-
tably, Dong et al. (2015) showed that injection of sgRNA-
Cas9 plasmids via the tail vein reduced the levels of cccDNA
and HBV protein in a mouse model carrying HBV cccDNA.
Another successful application of CRISPR/Cas for anti-

viral therapy was reported in 2014. Patient-derived cells
from Burkitt’s lymphoma patient with latent Epstein-Barr
virus infection showed dramatic proliferation arrest and a
concomitant decrease in viral load after exposure to a
CRISPR/Cas9 vector targeted to the viral genome (Wang and
Quake, 2014). All these studies indicate that disrupting viral
genes using gene editing is a promising strategy to treat in-
fectious diseases.

Therapeutic gene editing: challenges and future
directions

Advances in gene-editing technologies have laid the foun-
dation for next-generation therapies to cure a wide range of
genetic and nongenetic diseases. However, great effort in
diverse fields is still required to enable safe, effective and
affordable clinical translation. Here, we provide an overview
of the existing challenges and potential approaches to sur-
mount them. We also discuss issues remaining to be ad-
dressed in the future to enable gene-editing technology to
fulfill unmet biomedical needs.

Challenges faced by current technologies

Immune responses elicited by gene-editing tools could in-
fluence the therapeutic effects
As reviewed in the above sections, gene-editing tools can
introduce double-stranded breaks and perform precise ge-
netic modifications in the genome by removing, replacing,
or adding pieces of DNA at targeted sites. It is worth

684 Li, G., et al. Sci China Life Sci April (2022) Vol.65 No.4



highlighting that the majority of the enzymatic parts of
these tools are derived from nonhuman species. For ex-
ample, Cas proteins originate exclusively from bacteria,
archaea or phages (Al-Shayeb et al., 2020; Makarova et al.,
2020). Hence, the problem of immunity against exogenous
proteins could not be avoided. On the one hand, preexisting
neutralizing antibodies, along with antagonistic T cells
against commonly used Cas nucleases, were found in the
human body (Charlesworth et al., 2019; Wagner et al.,
2019). Thus, the therapeutic efficacy may be compromised.
Theoretically, these humoral and cellular immunity ob-
stacles may be bypassed by exploiting new Cas orthologs
from non-human-related microbes (Moreno et al., 2019) or
by modifying the antigen epitope of the Cas proteins used if
possible. On the other hand, adaptive immune responses
against various components of CRISPR therapeutics could
also be elicited. The effect of this problem is even more
obvious when multiple dosing of gene-editing tools is
needed. For example, Cas13-mediated RNA editing might
require repeated dosing for long-lasting, effective tran-
scriptional repression. In this situation, the therapeutic ef-
fects of the second dose or later doses could be impaired by
the antibody produced following the first dose. In this case,
using different Cas orthologs in each dosing to possibly
evade adaptive immune responses might be one potential
solution (Moreno et al., 2019).

Current gene-editing technologies can elicit unintended
DNA or RNA modifications
The strong efficacy of existing gene-editing tools is usually
accompanied by unintended DNA or RNA modifications.
Taking the CRISPR system as an example, DNA recognition
of the Cas-sgRNA complex cannot guarantee 100% speci-
ficity, as mismatches or other subtle changes in the target
DNA can be tolerated (Hsu et al., 2013; Kleinstiver et al.,
2016b; Strecker et al., 2019a; Tsai et al., 2015). In addition,
scrambled trans-cleavage activity of Cas12 or Cas13 might
occur following the cis-cleavage of targets (Abudayyeh et
al., 2016; Chen et al., 2018; East-Seletsky et al., 2016). Other
proteinic components, such as the deaminase of base editors,
could also cause nonspecific genome- and transcriptome-
wide off-target deamination (Doman et al., 2020; Grünewald
et al., 2019a; Grünewald et al., 2019b; Zhou et al., 2019a).
More seriously, aside from off-target effects, nuclease-based
gene editing can cause undesired on-target alterations in the
genome, such as large elongated DNA deletions around the
on-target DSBs (Adikusuma et al., 2018; Kosicki et al.,
2018; Zuccaro et al., 2020) and changes to the chromosome
structure, such as inversions or translocations (Frock et al.,
2015; Maeder et al., 2019). To diminish these unintended
gene editing outcomes, researchers have made great efforts
to optimize these tools (Kim et al., 2019). However, to a
certain degree, sacrificing on-target efficacy seems un-

avoidable for engineered tools (Schmid-Burgk et al., 2020).
Recently, one work showed that AsCas12a and LbCas12a
induced no trans-cleavage off-target effects in mouse em-
bryos, possibly due to the low concentration of genomic
DNA in the cell nucleus (Wei et al., 2021). This result may
partially ease our anxiety about the adverse effects of Cas
nucleases and indicate that unintended gene editing in vivo
might be distinct from that detected at the cellular level. In
any case, systematically evaluating the gene-editing out-
comes of the therapeutic cargo is required before clinical
treatment. Importantly, the safety issues mentioned above are
largely influenced by the delivery approach, which we will
discuss in the next section.
An important therapeutic application related to off-target

issues is performing allele-specific gene editing to treat
heterozygous dominant genetic diseases. It is crucial to
prevent off-target editing at normal gene sites while effi-
ciently disrupting the pathogenic allele. A suitable PAM
sequence may not be located near the mutated sites for DNA
editing (Li et al., 2018a). However, even when a canonical
PAM exists, the mutations might not be enough for a 20-nt
spacer to distinguish the two alleles (Li et al., 2018a). The
rational design of spacers may partially solve these pro-
blems, for example, by using truncated or tuned sgRNA (Li
et al., 2018a). A high-fidelity Cas enzyme to perfectly dis-
tinguish one-nucleotide difference between the wild-type
and gain-of-function mutant allele is highly desired for this
application. Nevertheless, this strategy is helpless when fa-
cing some complicated mutation types, for example, the
expansion of repeated sequences (Rodriguez and Todd,
2019; Rudich and Lamitina, 2018). It seems that this problem
may be addressed by RNA editing (Batra et al., 2017), as
unproportioned RNA knockdown of transcripts from the two
alleles can be accepted.

In vivo delivery of gene-editing tools
Benefiting from quality-controllable cell engineering with
highly efficient biomacromolecule delivery methods such as
electroporation, ex vivo genome editing has achieved im-
pressive milestones in clinical trials (Esrick et al., 2021;
Frangoul et al., 2021). However, compared with ex vivo gene
editing, in vivo gene editing has advanced relatively slowly.
One of the main contributing factors is the considerable
complexity of our human body.
Therapeutic delivery vectors can be generally assigned

into two distinct categories, viral and nonviral vector sys-
tems, according to their biological characteristics. AAV has
become one of the most promising and commonly used viral
vectors for gene therapy due to its high infection efficiency,
broad tissue tropism, and low immunogenicity (Wang et al.,
2019a; Wang et al., 2020a). However, the limited DNA
packaging capability of AAV prevents the efficacious de-
livery of the commonly used SpCas9 nuclease and base and
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prime editors. Endeavors to discover smaller natural Cas
nucleases or to evolve minimal Cas variants are an important
need (Ran et al., 2015; Shams et al., 2021).
The wide application of AAV vectors for gene therapy also

benefits from the resulting long-term gene expression.
However, for gene-editing tools, transient expression is
highly favorable because a long duration of efficacy can
increase the safety risks mentioned above. From this per-
spective, it might be suboptimal to choose AAV to deliver
gene-editing tools. However, a recent study reported that in
vivo base editing in hepatocytes using SaCas9 KKH-CBE
delivered by dual AAVs had no detectable off-target effects
at either the RNA or DNA level (Villiger et al., 2021). The
authors attributed this phenomenon to the low expression
level of CBE in vivo due to the dual AAV strategy. Thus, it
might be acceptable to carefully design the AAV vector to
minimize the expression of its therapeutic cargo while
maintaining its treatment efficacy.
On the other hand, nonviral vectors, especially nano-

particles, are highly suitable for the transient expression of
the delivered cargos. A comprehensive summary of nonviral
delivery strategies can be found in another review (Xu et al.,
2021b). mRNAs commonly serve as therapeutic cargos for
nanoparticles. The advantages of using nanoparticles to de-
liver mRNA-expressed gene-editing proteins are obvious.
First, large base editors, prime editors, or multiple regulators
can be introduced in mRNA format and packaged in nano-
particles to achieve efficient genome modifications (Song et
al., 2020; Villiger et al., 2021). Moreover, some commonly
used nanoparticles, such as lipid nanoparticles (LNPs), can
be engineered with good manufacturing practices (GMPs) to
ensure large-scale production and high quality (Kaczmarek
et al., 2017). However, we should also note the limited tissue
specificity of nanoparticles. Taking LNPs as an example, the
predominant target site of most LNPs upon systemic delivery
is usually restricted to the liver (Akinc et al., 2010). Although
much effort has been made to engineer LNPs for broader
tissue tropism (Samaridou et al., 2020), more information is
needed on the mechanisms of the interactions between LNPs
and targeted tissues.
The advantages of existing viral and nonviral vectors can

be combined for an improved delivery strategy. One such
strategy packaged mRNA in lentivirus virions (Ling et al.,
2021). The authors further attached an MS2 recognition
stem loop to the mRNA to mimic the package signal of the
long terminal region (LTR), mediating an effective inter-
action with the capsid protein-fused MS2 protein. In this
way, the high efficiency of transduction and transient ex-
pression of the two systems are combined together. This
promising delivery method has been used to cure wet age-
related macular degeneration and virus-induced herpetic
stromal keratitis in a mouse model (Ling et al., 2021; Yin et
al., 2021).

Future directions

Thanks to today’s powerful technologies, a major step for-
ward was taken toward curing various diseases. However,
patients still have unmet medical needs, which continues to
drive scientists to develop novel gene-editing tools and
therapeutic strategies. In this section, we will consider pro-
spective future directions of gene-editing technology and
discuss several tools with great potential to become novel
therapeutic platforms.

Manipulating the human genome at a larger scale: cor-
recting larger genomic variations
Nuclease-based genome editing may be used to correct
mutations in many genetic diseases, especially HDR strate-
gies, which can theoretically correct any genome alteration.
In fact, this technology has been developing relatively slowly
due to its extremely low efficiency in nonmitotic somatic
cells (Cox et al., 2015; Zheng et al., 2014). New alternative
tools, including base editors and prime editors, were devel-
oped to meet the need to correct mutations. These two editors
can precisely and efficiently correct gene alterations such as
point mutations, small genomic deletions, or insertions
(<60 bp) (Anzalone et al., 2019; Gaudelli et al., 2017; Komor
et al., 2016). However, it is very difficult for them to correct
larger genome variations (>100 bp), such as genetic dele-
tions, insertions, duplications, or inversions (insertions plus
deletions), which cause many types of severe genetic dis-
eases (Landrum et al., 2014). Although multiple guides can
be employed to direct Cas nucleases to induce deletions or
inversions of large DNA fragments (Maeder et al., 2019),
undesired byproducts occur, increasing safety risks. It is
worth noting that several works reported on bioRixv re-
purposed the prime editor to delete large DNA fragments
using dual peg-sgRNAs (Choi et al., 2021; Jiang et al., 2021).
However, the efficacy of this approach needs to be improved.
Accordingly, new technologies enabling manipulation of

the human genome on a larger scale with high efficiency and
precision are an important need. Here, we regard re-
combinase as a candidate, some types of which have already
been widely applied in human cells to create large gene in-
versions and deletions with high efficiency and precision
(Meinke et al., 2016; Van Duyne, 2015). One significant
problem is that the recognizable DNA sequence for re-
combinase is highly restricted, making it difficult to apply to
the natural human genome. In addition, engineerable sites on
the human genome conforming to the canonical recognition
model of recombinase are extremely limited (Lansing et al.,
2020b), leaves little space for directed evolution or rational
design. Fortunately, heterodimers of recombinases can be
employed to recognize targets with asymmetric half-sites
(Lansing et al., 2020b). Increasing the number of sites on the
human genome can be chosen as templates for protein
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engineering. Encouragingly, this strategy has been used
successfully to correct genomic inversions in a gene that
encodes factor VIII causing hemophilia A in human cells
(Lansing et al., 2020a).

A more general strategy for curing genetic diseases: from
gene scissors to gene glue
Precisely correcting gene mutations in situ is ideal for curing
genetic diseases. However, the dysfunction of one gene can
be attributable to hundreds of different genetic alterations,
which makes such personalized correction unaffordable in
terms of time and expenses. Thus, developing a more general
strategy to treat diseases caused by different genotypes is
highly desirable. One elegant idea is to insert an extra copy
of a gene in the human genome regardless of the existing
aberrant one. A cDNA could be precisely integrated behind a
normal endogenous gene, or a complete gene cassette could
be inserted into safe harbors (Barzel et al., 2015; Wang et al.,
2019b). It is unavoidable to refer again to HDR, which may
have the ability to achieve this goal. However, as discussed
above, the working mechanism of HDR relies heavily on the
endogenous DNA repair machinery, which causes low effi-
ciency in nonmitotic cells. Nevertheless, we should empha-
size the availability of HDR when integrating gene
fragments into the genomes of mitotic cells such as hepato-
cytes or stem cells (Barzel et al., 2015; Martin et al., 2019;
Yin et al., 2014; Yin et al., 2016).
Transposase can integrate large DNA fragments into the

genomes of diverse cell types with high efficiency (Hickman
and Dyda, 2016; Ivics et al., 2009). In contrast to that of
recombinase, the recognition sequence of the commonly
used transposase is quite simple, which leads to random in-
tegration of the donor in the human genome. Thus, efforts
should be made to restrict the function of transposase to
unique sites in the human genome. One simple idea is to
conjugate transposase with specific DNA recognition mod-
ules, but the efficiency and specificity of these systems re-
main to be further optimized (Feng et al., 2010; Kovač et al.,
2020; Luo et al., 2017; Owens et al., 2012; Owens et al.,
2013). In addition, we should note that the fused specific
DNA recognition modules concentrated the transposase near
the targeted sites, whereas the intact transposase domain still
performed its genome-wide functions. This obstacle can
potentially be addressed by two newly discovered CRISPR
transposase systems: CRISPR-V-K and CRISPR-I-F
(Klompe et al., 2019; Strecker et al., 2019b). Both of them
enable efficient and programmable targeted integrations in
bacterial genomes (Klompe et al., 2019; Strecker et al.,
2019b; Vo et al., 2021). More work should be focused on
elucidating the efficacy of these two systems in mammalian
cells in the future.
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