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Abstract: SARS-CoV-2 has caused a worldwide pandemic. The emerging variants B.1.1.7 in the 20 

UK, B.1.351 in South Africa, and P.1 in Brazil have recently spread rapidly, arousing concerns 21 

about the efficacy of the current vaccines and antibody therapies. Therefore, there is still a high 22 

demand for alternative vaccines with great efficacy, high design flexibility, and fast manufacturing 23 

speed. Here, we reported a circular RNA (circRNA) vaccine that encodes the trimeric RBD of 24 

SARS-CoV-2 spike protein. Being a circularized RNA molecule, circRNARBD could be rapidly 25 

produced via in vitro transcription and is highly stable without nucleotide modification. Lipid-26 

nanoparticle-encapsulated circRNARBD elicited potent and sustained neutralizing antibodies, as 27 

well as Th1-biased T cell responses in mice. Notably, antibodies from mice immunized with 28 

circRNA encoding RBD variant (K417N-E484K-501Y) effectively neutralized B.1.351 variant. 29 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435594doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435594


Moreover, we developed therapeutic circRNAs, encoding SARS-CoV-2 neutralizing nanobodies 30 

or hACE2 decoys, which could effectively neutralize SARS-CoV-2 pseudovirus. Our study 31 

suggests that circular RNA holds the potential to become a novel vaccine and therapeutic platform.   32 

 33 

Main Text:  34 

Coronavirus disease 2019 (COVID-19) is a serious worldwide public health emergency caused by 35 

a novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) (1, 2). To date, COVID-19 36 

has resulted in more than one hundred million confirmed cases and over two million confirmed 37 

deaths (World Health Organization). Thus, there is an urgent need for the development of safe and 38 

effective vaccines against SARS-CoV-2 infection.  39 

      SARS-CoV-2, together with Severe Acute Respiratory Syndrome (SARS)-CoV and Middle 40 

East Respiratory Syndrome (MERS)-CoV, other two highly pathogenic coronaviruses, belongs to 41 

the genus Betacoronavirus of the Coronaviridae family (3). SARS-CoV-2 is a single-strand, 42 

positive-sense, enveloped virus, and its virion is composed of an inner capsid formed by 30-kb 43 

RNA genome wrapped by the nucleocapsid (N) proteins and a lipid envelope coated with the 44 

membrane (M), envelope (E), and trimeric spike (S) proteins (4). The S protein of SARS-CoV-2, 45 

composed of S1 and S2 subunits, is the major surface protein of the virion. The S protein mediates 46 

viral entry into host cells by binding to its receptor, angiotensin-converting enzyme 2 (ACE2), 47 

through the receptor-binding domain (RBD) at the C terminus of the S1 subunit. This binding 48 

subsequently induces the fusion between the SARS-CoV-2 envelope and the host cell membrane 49 

mediated by the S2 subunit, leading to the release of the viral genome into the cytoplasm (5-8). 50 

    The S protein, S1 subunit, or the RBD antigen of SARS-CoV-2, could induce both B cell and T 51 

cell responses, generating highly potent neutralizing antibodies against SARS-CoV-2 (9-11). 52 

Vaccination is the most promising approach to end COVID-19 pandemic. Traditional vaccine 53 

platforms, such as inactivated vaccines, virus-like particle vaccines, and viral vector-based 54 

vaccines have been adopted to develop SARS-CoV-2 vaccines (12-20). Importantly, the mRNA 55 

vaccines against SARS-CoV-2 have been developed at warp speed and urgently approved for use 56 

(21-27), despite the fact that such strategy had never been applied commercially before (28). The 57 

mRNA vaccine contains a linear single-strand RNA, consisting of 5’ cap, the untranslated region 58 

(UTR), antigen-coding region, and 3’ polyA tail, which is delivered into bodies via lipid-nano 59 
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particle (LNP) encapsulation (28). The clinical-scale mRNA vaccines could be manufactured 60 

rapidly upon the viral antigen sequence is released (21). However, the current mRNA vaccine still 61 

has certain limitations due to its inherent instability and suboptimal thermostability after LNP 62 

encapsulation for in vivo administration (29-31), as well as potential immunogenic side effects (32, 63 

33).  64 

    Circular RNAs (circRNAs) are covalently closed single-stranded RNA transcripts, comprising 65 

a large class of non-coding RNAs generated by a non-canonical RNA splicing event called 66 

backsplicing in eukaryotic cells (34-36). Some viral genomes happen to be circular RNAs, such as 67 

hepatitis D virus and plant viroids (33). In recent years, thousands of circRNAs have been 68 

identified in eukaryotes, including fungi, plants, insects, fish, and mammals via high-throughput 69 

RNA sequencing and circRNA-specific bioinformatics (36). Unlike linear mRNA, circRNA is 70 

highly stable as its covalently closed ring structure protects it from exonuclease-mediated 71 

degradation (36-38). So far, only a few endogenous circRNAs have been shown to function as 72 

protein translation templates (39-42). Although circRNA lacks the essential elements for cap-73 

dependent translation, it can be engineered to enable protein translation through internal ribosome 74 

entry site (IRES) or the m6A modification incorporated to its 5’ UTR region (43, 44). 75 

      Here, we developed circRNA vaccines against the native SARS-CoV-2 or its emerging 76 

variants, which induced robust neutralizing antibodies and strong T cell responses in mice. 77 

Moreover, circRNA could be employed to express nanobodies or AEC2 decoys to neutralize the 78 

SARS-CoV-2 pseudovirus, manifesting its therapeutics potential to directly blockade such deadly 79 

infections. 80 

 81 

In Vitro circRNA production by Group I ribozyme autocatalysis 82 

We adopted a Group I ribozyme autocatalysis strategy (43) to produce circular RNA encoding 83 

SARS-CoV-2 RBD antigens (23), termed circRNARBD (Fig. 1A). To enhance the immunogenicity 84 

of RBD antigens, we added a signal peptide sequence (SP) to the N-terminus of RBD for its 85 

secretory expression (45-47). In this construct, the IRES element was placed before the RBD-86 

coding sequence to initiate its translation. The signal peptide sequence of human tissue 87 

plasminogen activator (tPA) (17, 45) was fused to the N-terminus of RBD to ensure the secretion 88 

of antigens, and the trimerization motif of bacteriophage T4 fibritin protein (foldon) (48) was fused 89 
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to its C terminus, mimicking the natural conformation of SARS-CoV-2 Spike trimers, which have 90 

a superior hACE2 binding capacity to the monomeric RBD counterparts (6, 7, 49). This IRES-SP-91 

RBD-T4 sequence was then inserted into the cyclization vector (Fig. 1A) to generate the template 92 

for in vitro transcription (IVT) in order to produce circRNARBD. The circularization of circRNARBD 93 

was verified (Fig. 1B) by reverse transcription and RT-PCR analysis using specific primers (Fig. 94 

1A).  95 

      Owing to this covalently closed circular structure, the circRNARBD migrated faster in 96 

electrophoresis (fig. S1A) and appeared more resistant to exonuclease RNase R than the linear 97 

RNAs (fig. S1B). Moreover, the high-performance liquid chromatography (HPLC) purification 98 

showed that the RNase R treatment purged significant amount of the linear precursor RNAs, an 99 

important step for the production and purification of the circRNARBD (fig. S1C).  100 

 101 

Thermal stable circRNARBD produces functional SARS-CoV-2 RBD antigens  102 

To test the secretory expression of RBD produced by circRNARBD, the purified circRNARBD was 103 

transfected into HEK293T cells. We detected ample production of SARS-CoV-2 RBD antigens in 104 

the supernatant by Western blot (Fig. 1C). Quantitative ELISA assay showed that the RBD protein 105 

reached ~143 ng/mL in the supernatant, 50-fold more than the linear RNARBD group (Fig. 1D). We 106 

further confirmed that circRNARBD could be expressed in murine NIH3T3 cells (Fig. 1E). Together, 107 

these results demonstrated that robust secretory RBD antigens could be produced using 108 

circRNARBD in both human and murine cells.  109 

      The inherent stability of circRNA has been reported (50), and such a feature would make 110 

circRNA an attractive vaccine candidate. To test this, circRNARBD was stored at room temperature 111 

(~25°C) for various days before transfected into HEK293T cells. We found that circRNARBD could 112 

be readily expressed without detectable loss even after two weeks of shelf time (Fig. 1F), 113 

highlighting its remarkable thermal stability. 114 

      To further verify whether the secreted SARS-CoV-2 RBD antigens produced by circRNARBD 115 

were functional, the supernatants of circRNARBD-transfected cells were used for competition assay 116 

using hACE2-overexpressing HEK293 cells (HEK293T-ACE2) and SARS-CoV-2 pseudovirus 117 

harboring an EGFP reporter (51). We witnessed that the secreted SARS-CoV-2 RBD antigens 118 
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could effectively block SARS-CoV-2 pseudovirus infection (Fig. 1G and fig. S2). Altogether, 119 

circRNARBD showed robust protein expression and high thermal stability, illuminating its potential 120 

for vaccination. 121 

 122 

SARS-CoV-2 circRNA vaccines elicit sustained humoral immune responses with high-level 123 

neutralizing antibodies 124 

With its stability and immunogen-coding capability, we reasoned that circRNA could be developed 125 

into a new type of vaccine. We then attempted to assess the immunogenicity of circRNARBD 126 

encapsulated with lipid nanoparticle in BALB/c mice (Fig. 2A). The circRNARBD encapsulation 127 

efficiency was greater than 93%, with an average size of 100 nm in diameter (Fig. 2B). Animals 128 

were immunized with LNP-circRNARBD through intramuscular injection twice, using a dose of 10 129 

μg or 50 μg per mouse at a two-week interval, while empty LNP was used as the placebo (Fig. 130 

2C). The amount of RBD-specific IgG and pseudovirus neutralization activity were evaluated at 131 

two or five weeks post LNP-circRNARBD boost.  132 

     High titers of RBD-specific IgG were elicited by circRNARBD in a dose-dependent manner, 133 

~3×104 and ~1×106 for each dose and for both 2- and 5-weeks post boost, indicating that 134 

circRNARBD could induce long-lasting antibodies against SARS-CoV-2 RBD (Fig. 2D).  135 

    To test the antigen-specific binding capability of IgG from vaccinated animals, we performed a 136 

surrogate neutralization assay (52). In line with the amount of RBD-specific IgG (Fig. 2D), 137 

antibodies elicited by circRNARBD vaccines showed evident neutralizing capacity in dose-138 

dependent manner, with an NT50 of ~2×104 for the dose of 50 μg (Fig. 2, E and F).  139 

      We further demonstrated that sera from circRNARBD-vaccinated mice neutralized SARS-CoV-140 

2 pseudovirus (Fig. 2G), with an NT50 of ~5.6×103 in mice immunized with 50 μg of circRNARBD 141 

vaccine. The large amount of RBD-specific IgG, potent RBD antigen neutralization, and sustained 142 

SARS-CoV-2 pseudovirus neutralizing capacity suggest that circRNARBD vaccines did induce a 143 

long-lasting humoral immune response in mice. 144 

 145 

SARS-CoV-2 circRNA vaccines induce strong T cell immune responses in the spleen 146 

B cells (the source of antibodies), CD4+ T cells, and CD8+ T cells are three pillars of adaptive 147 
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immunity, and they mediated effector functions that have been associated with the control of 148 

SARS-CoV-2 in both non-hospitalized and hospitalized cases of COVID-19 (53).  149 

    To probe CD4+ and CD8+ T cell immune responses in circRNARBD vaccinated mice (5 weeks 150 

post-boost), splenocytes were stimulated with SARS-CoV-2 Spike RBD pooled peptides (Table 151 

S1), and cytokine-producing T cells were quantified by intracellular cytokine staining among 152 

effector memory T cells (Tem, CD44+CD62L-) (fig. S3). Stimulated with RBD peptide pools, 153 

CD4+ T cells of mice immunized with circRNARBD vaccines exhibited Th1-biased responses, 154 

producing interferon-γ (IFN-γ), tumor necrosis factor (TNF-α), and interleukin-2 (IL-2) (Fig. 3, A 155 

and B), but not interleukin-4 (IL-4) (fig. S4), indicating that circRNARBD vaccines mainly induced 156 

the Th1- but not the Th2-biased immune responses. In addition, multiple cytokine-producing CD8+ 157 

were detected in circRNARBD vaccinated mice (Fig. 3, C and D). For unknown reasons, 10 μg of 158 

circRNARBD elicited stronger immune responses in both CD4+ and CD8+ effector memory T cells 159 

than 50 μg (Fig. 3, A to D), while the latter induced higher potency of neutralizing antibodies in 160 

the B cell responses (Fig. 2G).  161 

    Collectively, these results demonstrated that SARS-CoV-2 circRNARBD vaccines could induce 162 

high level of humoral and cellular immune responses in mice. 163 

 164 

SARS-CoV-2 circRNARBD-501Y.V2 vaccines show preferential neutralization activity against 165 

B.1.351 variant 166 

Next, we evaluated the efficacy of a circRNA vaccine encoding RBD/K417N-E484K-N501Y 167 

derived from the B.1.351/501Y.V2 variant, termed as circRNARBD-501Y.V2 (Fig. 4A). BALB/c mice 168 

were immunized with an i.m. injection of the circRNARBD-501Y.V2 vaccine, followed by a boost at a 169 

two-week interval. The immunized mice's sera were collected at 1 and 2 weeks post the boost. The 170 

ELISA showed that the RBD-501Y.V2-specific IgG titer reached 7×104 at 2 weeks post boost (Fig. 171 

4B). The surrogate neutralization assay showed that sera of circRNARBD-501Y.V2 immunized mice 172 

effectively neutralized RBD antigens (Fig. 4C). We then went on to assess the neutralization 173 

activity of the sera from mice immunized with circRNARBD or circRNARBD-501Y.V2 vaccines against 174 

D614G, B.1.1.7/501Y.V1, or B.1.351/501Y.V2 variants. VSV-based pseudovirus neutralization 175 

assay revealed that antibodies elicited by circRNARBD vaccines, which encode the native RBD 176 

sequence, effectively neutralized all three viral strains, with the highest activity against the D614G 177 
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strain (Fig. 4D). The circRNARBD-501Y.V2 immunized mouse serum could also neutralize all three 178 

pseudoviruses, with the highest neutralization activity against its corresponding variant, 501Y.V2 179 

(Fig. 4E). Collectively, circRNA vaccines-elicited antibodies showed the best neutralization 180 

activity against their corresponding variant strains. It’s worth noting that both vaccines could 181 

neutralize all three strains albeit with variable efficacies. Nevertheless, the multivalent vaccines 182 

should have provided better protection for both native SARS-CoV-2 strain and its circulating 183 

variants. 184 

 185 

Expression of SARS-CoV-2 neutralizing antibodies via circRNA platform 186 

Besides vaccine, circRNA could be re-purposed for therapeutics when used to express some other 187 

proteins or peptides, such as enzymes for rare diseases and antibodies for infectious diseases or 188 

cancer. Here, we attempted to test the therapeutic potential of circRNAs by expressing the SARS-189 

CoV-2 neutralizing antibodies. It has been reported that SARS-CoV-2 neutralizing nanobodies or 190 

hACE2 decoys could inhibit the SARS-CoV-2 infection (54-56). This prompted us to leverage the 191 

circRNA platform to express SARS-CoV-2 neutralizing nanobodies, including nAB1, nAB1-Tri, 192 

nAB2, nAB2-Tri, nAB3, and nAB3-Tri (54, 55), together with hACE2 decoys (56) (Fig. 5A). 193 

Pseudovirus neutralizing assay showed that supernatants of HEK293T cells transfected with 194 

circRNAnAB or circRNAhACE2 decoys could effectively inhibit pseudovirus infection (Fig. 5B). 195 

Among those, nAB1-Tri, nAB2, nAB2-Tri, and nAB3-Tri nanobodies produced by circRNAs 196 

completely blocked pseudovirus infection.  197 

 198 

Discussion 199 

COVID-19 is still a fast-growing global health crisis with circulating SAS-CoV-2 variants evading 200 

current vaccines elicited antibodies (57-59). This report established a novel approach using 201 

circRNA to produce SARS-CoV-2 related interventions, including vaccine, therapeutic 202 

nanobodies, and hACE2 decoys. 203 

       Several studies have reported that the full-length Spike protein (mRNA-1273 and BNT162b2) 204 

(21, 22, 27) or RBD-based mRNA vaccines elicit neutralizing antibodies and cellular immune 205 

responses (23-26, 60). As reported, most effective neutralizing antibodies recognize the RBD 206 
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region of S protein (54, 55, 61-64) and targeting RBD may induce less amount of non-neutralizing 207 

antibodies (23-26, 60). Given that RBD trimers were superior in binding hACE2 compared to their 208 

monomeric counterparts (49), we chose to express RBD trimers as the immunogen.  209 

       We highlight this generalizable strategy for designing immunogens. The coding sequence of 210 

circular RNA can be quickly adapted to deal with any emerging SARS-CoV-2 variants, such as 211 

the recently reported B.1.1.7/501Y.V1, B.1.351/501Y.V2, and P.1 variants (58, 65, 66). Moreover, 212 

circular RNAs could be quickly generated in large quantities in vitro, and they do not require any 213 

nucleotide modification, strikingly different from the canonical mRNA vaccines. Interestingly, 214 

circular RNA itself could serve as a vaccine adjuvant (33), suggesting that circRNA vaccine is 215 

likely benefit from its own adjuvant effect.  216 

        In this report, circRNARBD-501Y.V2 immunized mice produced high titers of neutralizing 217 

antibodies. Given that K417N-E484K-N501Y mutant in RBD reduces its interactions with certain 218 

neutralizing antibodies (58, 67), we also demonstrated that neutralizing antibodies produced by 219 

mice immunized with circRNARBD or circRNARBD-501Y.V2 had preferential neutralizing abilities to 220 

their corresponding virus strains.  221 

       Multiple candidates for the treatment of COVID-19 have been studied during the pandemic, 222 

especially those neutralizing antibodies (54, 55, 61-64) and engineered soluble natural receptor for 223 

the virus, hACE2 (68, 69). circRNA-encoded SARS-CoV-2 neutralizing nanobodies or hACE2 224 

decoy all showed strong neutralizing ability in vitro. Given that SARS-CoV-2 variants encoding 225 

E484K or N501Y or the K417N-E484K-N501Y evade certain neutralizing antibodies induced by 226 

mRNA vaccines (58, 67), we anticipated that the effect of circRNA-encoded hACE2 decoy might 227 

not be affected by virus mutations.   228 

      Owing to their specific properties, circRNAs hold potentials in biomedical applications. 229 

Nevertheless, the immunogenicity and the safety of circular RNA vaccines or drugs await further 230 

investigations. 231 

  232 
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 233 

Fig. 1. Expression of trimeric SARS-CoV-2 RBD antigens with circular RNAs in vitro. (A) 234 

Schematic diagram of circRNARBD circularization by the Group I ribozyme autocatalysis. SP, 235 

signal peptide sequence of human tPA protein. T4, the trimerization domain from bacteriophage 236 

T4 fibritin protein. RBD, the receptor binding domain of SARS-CoV-2 Spike protein. The arrows 237 

indicate the the design of primers for PCR analysis.  (B) The agarose gel electrophoresis result of 238 

the PCR products of linear RNARBD and circRNARBD. (C) Western Blot analysis showing the 239 

expression level of RBD antigens in the supernatant of HEK293T cells transfected with 240 

circRNARBD. The circRNAEGFP and linear RNARBD were set as controls. (D) The quantitative 241 

ELISA assay to measure the concentration of RBD antigens in the supernatant. The data in (B) 242 

was shown as the mean ± S.E.M. (n = 3). (E) Western Blot analysis showing the expression level 243 

of RBD antigens in the supernatant of mouse NIH3T3 cells transfected with circRNARBD. The 244 

circRNAEGFP was set as controls. (F) Western Blot analysis showing the expression level of RBD 245 

antigens in the supernatant of HEK293T cells transfected with circRNARBD for different shelf time 246 

(3, 7 or 14 days) at room temperature (~25°C). (G) Quantification of the competitive inhibition of 247 

SARS-CoV-2 pseudovirus infection (EGFP) by the circRNARBD-translated RBD antigens. The 248 
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circRNAEGFP and linear RNARBD were set as controls. The data in (E) was shown as the mean ± 249 

S.E.M. (n = 2).  250 

  251 
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 252 

Fig. 2. Humoral immune responses in mice immunized with SARS-CoV-2 circRNARBD 253 

vaccines. (A) Schematic representation of LNP-circRNA complex. (B) Representative of 254 

concentration-size graph of LNP-circRNARBD measured by dynamic light scattering method. (C) 255 

Schematic diagram of the LNP-circRNARBD vaccination process in BALB/c mice and serum 256 

collection schedule for specific antibodies analysis. (D) Measuring the SARS-CoV-2 specific IgG 257 

antibody titer with ELISA. The data were shown as the mean ± S.E.M. (n = 4 or 5).  (E) Sigmoidal 258 

curve diagram of the inhibition rate by sera of immunized mice with surrogate virus neutralization 259 

assay. Sera from circRNARBD (10 μg) and circRNARBD (50 μg) immunized mice were collected at 260 

2 weeks post the second dose. The data was shown as the mean ± S.E.M. (n = 4). (F) Sigmoldal 261 

curve diagram of the inhibition rate by sera of immunized mice with surrogate virus neutralization 262 

assay. Sera from circRNARBD (10 μg) and circRNARBD (50 μg) immunized mice were collected at 263 

5 weeks post boost. The data were shown as the mean ± S.E.M. (n = 5). (G) The NT50 was 264 

calculated using lentivirus-based SARS-CoV-2 pseudovirus. The data was shown as the mean ± 265 

S.E.M. (n = 5). 266 

  267 
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 268 

Fig. 3. SARS-CoV-2 specific T cell immune responses in mice immunized with SARS-CoV-2 269 

circRNARBD vaccines. (A) The FACS analysis results showing the percentages of cytokine 270 

positive cells evaluated among single and viable CD44+CD62L-CD4+ T cells. (B) The intracellular 271 

staining assay for cytokines (IFN-γ, TNF-α, and IL-2) production among SARS-CoV-2 specific 272 

CD4+ effector memory T cells (CD44+CD62L-) in splenocytes. (C) The FACS analysis results 273 
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showing the percentages of cytokine positive cells evaluated among single and viable 274 

CD44+CD62L-CD8+ T. (D) The intracellular staining assay for cytokines (IFN-γ, TNF-α, and IL-275 

2) production among SARS-CoV-2 specific CD8+ effector memory T cells (CD44+CD62L-) in 276 

splenocytes. Results were pooled from two independent experiments (B and D). Data are presented 277 

as the mean ± S.E.M. in C and D, n = 3 or 4 for each group. Each symbol represents an individual 278 

mouse. 279 

  280 
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 281 

Fig. 4. The susceptibility of SARS-CoV-2 D614G, B.1.1.7 or B.1.351variants to neutralizing 282 

antibodies elicited by the circRNARBD or circRNARBD-501Y.V2 vaccines in mice. (A) Schematic 283 

diagram of circRNARBD-501Y.V2 circularization by the Group I ribozyme autocatalysis. SP, signal 284 

peptide sequence of human tPA protein. T4, the trimerization domain from bacteriophage T4 285 

fibritin protein. RBD-501Y.V2, the RBD antigen harboring the K417N-E484K-N501Y mutations 286 

in SARS-CoV-2 501Y.V2 variant. (B) Measuring the SARS-CoV-2 specific IgG antibody titer with 287 

ELISA. The data was shown as the mean ± S.E.M. Each symbol represents an individual mouse. 288 

(C) Sigmodal curve diagram of the inhibition rate by sera of immunized mice with surrogate virus 289 

neutralization assay. Sera from circRNARBD-501Y.V2 (50 μg) immunized mice were collected at 1 290 

week or 2 weeks post boost. The data were shown as the mean ± S.E.M. (D) Neutralization assay 291 

of VSV-based D614G, B.1.1.7 or B.1.351 pseudovirus with the serum of mice immunized with 292 

circRNARBD vaccines. The serum samples were collected at 5 weeks post boost. The data were 293 
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shown as the mean ± S.E.M. (n = 5). (E) Neutralization assay of VSV-based D614G, B.1.1.7 or 294 

B.1.351 pseudovirus with the serum of mice immunized with circRNARBD-501Y.V2 vaccines. The 295 

serum samples were collected at 1 week post boost. The data were shown as the mean ± S.E.M. (n 296 

= 5).  297 
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 299 

Fig. 5. Expression of SARS-CoV-2 neutralizing nanobodies or hACE2 decoys via circRNA 300 

platform. (A) Schematic diagram of circRNAnAB or circRNAhACE2 decoys circularization by the 301 

Group I ribozyme autocatalysis. (B) Lentivirial-based pseudovirus neutralization assay with the 302 

supernatant from cells transfected with circRNA encoding neutralizing nanobodies nAB1, nAB1-303 

Tri, nAB2, nAB2-Tri, nAB3 and nAB3-Tri or ACE2 decoys. The luciferase value was normalized 304 

to the circRNAEGFP control. The data was shown as the mean ± S.E.M. (n = 2). 305 

 306 
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Supplementary Figure Legends 308 

 309 

fig S1: Agarose gel electrophoresis and HPLC purification of circRNARBD. (A) The agarose 310 

gel electrophoresis result of linear RNARBD and circRNARBD with different treatment. (B) The 311 

agarose gel electrophoresis result of circRNARBD and linear RNARBD digested by RNase R with 312 

various time from 5 min to 120 min. (C) HPLC chromatogram of circRNARBD without RNase R 313 

treatment (left) and circRNARBD treated by RNase R (right). 314 

 315 
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 317 

fig S2: The FACS chromatogram of the competitive inhibition of SARS-CoV-2 pseudovirus 318 

infection (harboring EGFP reporter) by the circRNARBD-translated RBD antigens.  319 

 320 
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 322 

fig S3: Flow panel and gating strategy to quantify SARS-CoV-2-RBD-specific T cells in 323 

mice. The plots showed the gating strategy of single and viable T cells from spleens. CD4+ or 324 

CD8+ T cells were further analyzed with the expression of CD44 and CD62L. 325 

 326 
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 328 

fig S4: Identification of IL-4 producing CD4+ T cells in mice immunized with SARS-CoV-2 329 

circRNARBD vaccines. Splenocytes were stimulated with SARS-CoV-2-RBD peptides for 7 hr in 330 

the presence of BFA and Monensin. PMA and Ionomycin stimulation were applied as a positive 331 

control. Cells were gated on single and viable CD4+ T cells. The plots are representative for two 332 

independent experiments with same results.  333 

 334 
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Materials and methods 336 

Cell culture  337 

HEK293T and NIH3T3 cell lines were maintained in our laboratory. The HEK293T-hACE2 cell 338 

line was ordered from Biodragon Inc. (#BDAA0039, Beijing, China). These mammalian cell lines 339 

were cultured in Dulbecco′s Modified Eagle Medium (Corning, 10-013-CV) with 10% fetal bovine 340 

serum (FBS) (BI), supplemented with 1% penicillin-streptomycin in 5% CO2 incubator at 37°C. 341 

The Huh-7 cells were maintained in Xie laboratory at Peking University, cultured with the methods 342 

previously described (61). 343 

 344 

circRNA transfection in vitro  345 

For the circRNA transfection in HEK293T or NIH3T3 cells, 3×105 cells per well were seeded in 346 

12-well plates. 4 μg of RNase R-treated or HPLC-purified & CIP-treated circRNAs were 347 

transfected into the HEK293T or NIH3T3 cells, 24 hr later, using Lipofectamine MessengerMax 348 

(Invitrogen, LMRNA003) according to the manufacturer’s instructions. 48 hr post transfection, 349 

the cell lysis and supernatant were collected for the following detections. 350 

 351 

LNP encapsulation of circRNA 352 

The circRNAs were encapsulated with lipid nanoparticle (LNP) through a previously described 353 

process (70). Briefly, the circRNAs were diluted in the 50 mM citrate buffer (pH 3.0) and the lipids 354 

were dissolved and mixed in ethanol at molar ratios of 50:10:38.5:1.5 (MC3-355 

lipid:DSPC:cholesterol:PEG2000-DMG). The lipids mixture was then mixed with the circRNA 356 

solution at the volume ratio of 1:3 in the NANOASSEMBLR BENCHTOP (PRECISION, 357 

#NIT0046). Then the LNP-circRNA formulations were diluted 40-fold with the 1×PBS buffer (pH 358 

7.2~7.4) and concentrated by ultrafiltration with Amicon® Ultra Centrifugal Filter Unit 359 

(Millipore). The concentration and encapsulation rate of circRNAs were measured by the Quant-360 

iT™ RiboGreen™ RNA Assay Kit (Invitrogen™ #R11490). The size of LNP-circRNA particles 361 

was measured using dynamic light scattering on a Malvern Zetasizer Nano-ZS 300 (Malvern). 362 

Samples were irradiated with red laser (l = 632.8 nm) and scattered light were detected at a 363 
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backscattering angle of 173. Results were analyzed to obtain an autocorrelation function using the 364 

software (Zetasizer V7.13).  365 

 366 

Circulation fragments PCR assay 367 

The circRNARBD or linear RNARBD was reverse transcribed into cDNA templates using specific 368 

primers with Quantscript RT Kit (KR103, TIANGEN). Then the internal control fragments and 369 

junction fragments were PCR amplified from the above cDNA templates with corresponding 370 

primers, respectively.  371 

 372 

Quantitative determination of SARS-CoV-2 Spike RBD expression in vitro 373 

Quantification of RBD expression in cell culture supernatants was performed with a commercial 374 

SARS-CoV-2 Spike RBD Protein ELISA kit (RK04135, ABclonal) according to the 375 

manufacturer’s instruction. The supernatants were diluted at 1:100 rate. Final concentrations of 376 

RBD were calculated basing on the linear standard curve of absorbance at 450 nm, using 630 nm 377 

as reference. Briefly, the detection wells were pre-coated with monoclonal antibody specific for 378 

Spike RBD protein. After incubation with samples or standards at 37°C for two hours, samples 379 

unbound to immobilized antibody would be removed by washing steps. Then the RBD-specific 380 

antibodies were added to wells for one-hour incubation at 37°C. After washing, the HRP substrates 381 

and stop solution were added and the absorbance at 450 nm were measured using 630 nm as 382 

reference. 383 

 384 

Mouse vaccination and serum collection 385 

The BALB/c mice were ordered from Beijing Vital River Laboratory Animal Technology Co., Ltd. 386 

All mice were bred and kept under SPF (specific pathogen-free) conditions in the Laboratory 387 

Animal Center of Peking University. The animal experiments were approved by Peking University 388 

Laboratory Animal Center (Beijing), and undertaken in accordance with the National Institute of 389 

Health Guide for Care and Use of Laboratory Animals.  390 
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      For mouse vaccination, groups of 6-8 week-old female BLAB/c mice were intramuscularly 391 

immunized with LNP-circRNARBD (10 μg, N = 5; 50 μg, N = 5), or Placebo (empty LNP, N = 5) 392 

in 150 μL using a 1 mL sterile syringe, and 2 weeks later a second dose was immunized to boost 393 

the immune responses. The sera of immunized mice were collected at 2 and 5 weeks post the 394 

second immunization to detect the SARS-CoV-2-specific IgG titers and neutralizing antibody 395 

activity as described below. At 5 weeks post the second immunization, the immunized mice were 396 

sacrificed and the splenocytes were isolated for the detection of SARS-CoV-2-specific CD4+ and 397 

CD8+ T cell immune responses by Flow cytometry analysis and ELISA as described below. 398 

 399 

Antibody titer measurement with ELISA 400 

All the immunized mouse serum samples were heat-inactivated at 56°C for 30 min before use. The 401 

SARS-CoV-2-specific IgG antibody titer was measured by ELISA. Briefly, serial 3-fold dilutions 402 

(in 1% BSA) of heat-inactivated sera, starting at 1:50, were added to the 96-well plates (100 403 

μL/well; Costar) coated with recombinant SARS-CoV-2 Spike antigens (Sino Biological) and 404 

blocked with 1% BSA, and the plates were incubated for at 37°C for 60 min. Then, after three 405 

washes with wash buffer, the Horseradish peroxidase HRP-conjugated rabbit anti-mouse IgG 406 

(Sigma) diluted in 1% BSA at 1:10,000 ratio (Sigma), was added to the plates and incubated at 407 

37°C for 45 min. Then the plates were washed for 4 times with wash buffer and added with TMB 408 

substrates (100 μL/well) followed by incubation for 15-20 min. And then the ELISA stop buffer 409 

was added into the plates. Finally, the absorbance (450/630 nm) was measured with Infinite M200 410 

(TECAN). The Endpoint IgG titers were defined as the dilution, which emitted an optical density 411 

exceeding 3x background (without serum but secondary antibody was added).   412 

 413 

SARS-CoV-2 Surrogate Virus Neutralization Assay 414 

The neutralizing activity of mouse serum samples was detected by SARS-CoV-2 Surrogate Virus 415 

Neutralization Test Kit (L00847A, GenScript). Detections were performed according to 416 

manufacturer’s instruction. Serial 10-fold dilutions of heat-inactivated sera, starting at 1:10, were 417 

incubated with HRP-conjugated RBD solutions at 37°C for half an hour, and then the mixtures 418 

were added  into 96-well plates pre-coated with human ACE2 (hACE2) proteins and incubated for 419 
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15 min at 37°C. After washing the TMB substrates and stop solutions were added and the 420 

absorbance (450/630 nm) was measured with Infinite M200 (TECAN). The inhibition rates of 421 

serum samples were calculated according to the following formula. The half-neutralization titer of 422 

serum (NT50) was determined using four-parameter nonlinear regression in Prism 8 (GraphPad). 423 

    Inhibition rate = (1- OD value of sample/OD value of negative control) × 100% 424 

 425 

Pseudovirus-based neutralization assay  426 

The production of lentivirus-based SARS-CoV-2 pseudovirus and neutralization assay were 427 

performed as described previously (71). Briefly, the SARS-CoV-2 pseudovirus were produced by 428 

co-transfecting plasmids psPAX2 (6 μg), pSpike (6 μg), and pLenti-Luc-GFP (6 μg) into 429 

HEK293T cells using X tremeGENE HP DNA Transfection Reagent (Roche) according to the 430 

manufacturer′s instructions. 48 hr post transfection, the supernatants containing pseudovirus 431 

particles were harvested and filtered through a 0.22-μm sterilized membrane for the neutralization 432 

assay as described below. 433 

    For the determination of NT50 of immunized mouse serum, the HEK293T-hACE2 cells were 434 

seeded in 96-well plates (50,000 cells/well) and incubated for approximate 24 hr until reaching 435 

over 90% confluent, preparing for pseudovirus infection. The mouse serum was 3-fold diluted, 436 

starting at 1:40, and incubated with the SARS-CoV-2 pseudovirus (MOI ≈ 0.05) at 37°C for 60 437 

min. The DMEM medium without serum was used as the negative control group. Then the 438 

supernatant of HEK293T-hACE2 cells were removed and the mixer of serum and pseudovirus 439 

were added to each well. 36-48 hr later, the luciferase activity, which reflecting the degree of 440 

SARS-CoV-2 pseudovirus transfection, was measured using the Nano-Glo Luciferase Assay 441 

System (Promega). The 50% neutralization titer (NT50) was defined as the fold-dilution,  which 442 

emitted an exceeding 50% inhibition of pseudovirus infection in comparison with the control group. 443 

  The neutralization assay of VSV-based pseudovirus of SARS-CoV-2 and variants was performed 444 

as described previously (61, 62).Briefly, serum was diluted at 1:100 with 5 additional serial 5-445 

fold dilution, and incubated with the same volume of pseudovirus with a TCID50 of 1.3×104 for 60 446 

min at 37°C. 20,000 Huh-7 cells/well were cultured	with mixture at 37°C for 24 h. Luciferase 447 

activity was measured using the britelite plus Reporter Gene Assay System (PerkinElmer). 448 
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Relative luciferase units (RLU) were normalized to untreated groups, and analyzed by four-449 

parameter nonlinear regression in Prism (GraphPad). 450 

  For the neutralization assay of circRNAnAB or circRNAACE2 decoys, the HEK293T-hACE2 cells 451 

were seeded in 96-well plates (50,000 cells/well) and incubated for approximate 24 hr until 452 

reaching over 90% confluent. The pseudovirus were pre-incubated with the supernatant of the 453 

circRNAnAB or circRNAACE2 decoys transfected cells at 37°C for 60 min, and then added to cells in 454 

the 96-well plates. Media were changed at 24 hr after transduction. All cells were collected at 48 455 

hr after transduction. Luciferase activity was measured using the Nano-Glo Luciferase Assay 456 

System (Promega). The relative luminescence units were normalized to cells infected with 457 

supernatant of cell transfected with the circRNAEGFP. 458 

 459 

T cell flow cytometry analysis 460 

The Splenocytes from each immunized mouse were cultured in R10 media (RPMI 1640 461 

supplemented with 1% Pen-Strep antibiotic, 10% HI-FBS), stimulated with RBD peptide pools 462 

(Table S1) (Sangon Biotech) for 7 hr at 37°C with protein transport inhibitor cocktail (added 3 hr 463 

later). Peptide pools were used at a final concentration of 2 μg/mL for each peptide. Cells from 464 

each group were pooled for stimulation with cell stimulation cocktail (PMA/Ionomycin) as a 465 

positive control. Following stimulation, cells were washed with PBS prior to staining with 466 

LIVE/DEAD for 20 min at room temperature. Cells were then washed in stain buffer (PBS 467 

supplemented with 2.5% FBS) and suspended in Fc Block for 5 min at RT prior to staining with a 468 

surface stain of following antibodies: CD3 (Invitrogen, 45-0031-82)/CD4 (BD, 562285)/CD8 (BD, 469 

553035)/CD69 (BD, 557392)/CD44 (BD, 563058)/CD62L (BD, 560507). After 20 min, cells were 470 

washed with stain buffer, and then fixed and permeabilized using the BD Cytoperm 471 

fixation/permeabilization solution kit according to manufacturer instructions. Cells were washed 472 

in perm/wash solution, followed by intracellular staining (30 min, RT) using a cocktail of the 473 

following antibodies: IFN-γ (BD, 557998)/IL-2 (BD, 560547)/IL-4 (BD, 554435)/TNF-a (BD, 474 

557644). Finally, cells were washed in perm/wash solution and suspended in stain buffer. Samples 475 

were washed and acquired on a LSRFortessa (BD Biosciences). Analysis was performed using 476 

FlowJo software. 477 

 478 
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Expression of neutralizing nanobodies or ACE2 decoys by circular RNAs 479 

HEK293T cells were transfected with circular RNA in transfection reagent. Circular RNA 480 

encoding secretary nanobodies or hACE2 decoys were purified after GTP treatment for cyclization. 481 

In brief, HEK293T cells were seeded in 12-well plates. After 24 h, cells were transfected with 482 

circRNA (4 μg per well) and continuously added fresh medium to a final volume of about 1 ml. 483 

Supernatants were harvested at 48 hr post transfection and centrifuged to remove cells. 484 

 485 
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